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Abstract
We report a theoretical study of diverse non-classical photon states that can be realized in
superconducting quantum metamaterials. As a particular example of superconducting
quantum metamaterials, an array of SQUIDs incorporated in a low-dissipative transmission
line (resonant cavity) will be studied. This system will be modeled as a set of two-level
systems (qubits) strongly interacting with resonant cavity photons. We predict and analyze a
second-order phase transition between incoherent (the high-temperature phase) and coherent
(the low-temperatures phase) states of photons. In the equilibrium state the partition function Z
of the electromagnetic field (EF) in the cavity is determined by the effective action Seff{P(τ )}
that, in turn, depends on the imaginary time dependent momentum of the photon field P(τ ).
We show that the order parameter of this phase transition is the P0(τ ) minimizing the effective
action of the whole system. In the incoherent state, the order parameter P0(τ ) = 0 but at low
temperatures we obtain various coherent states characterized by non-zero values of P0(τ ).
This phase transition in many aspects resembles the Peierls metal–insulator and the
metal–superconductor phase transitions. The critical temperature of such a phase transition T∗

is determined by the energy splitting of two-level systems 1, the number of SQUIDs in the
array N and the strength of the interaction η between SQUIDs and photons in the cavity.

(Some figures may appear in colour only in the online journal)

1. Introduction

Great attention has been devoted to the theoretical and
experimental study of novel quantum metamaterials [1–3].
These systems consist of a large number of solid-
state elements (qubits), i.e. two-level systems showing
diverse coherent quantum phenomena, e.g. quantum beating
(oscillations) between two distinguished states and, in the
presence of externally applied radiation, microwave induced
Rabi oscillations, Ramsey fringes etc [4]. To obtain such
coherent quantum-mechanical behavior in single qubits, the
dissipation and decoherence have to be small enough [4].
Moreover, in order to observe novel collective coherent
quantum effects in metamaterials a strong long-range
interaction between single elements has to be provided by the
surrounding media.

Various superconducting systems, e.g. arrays of Joseph-
son junctions, RF SQUIDs, multiple-junction superconduct-
ing quantum interferometers, just to name a few, incorporated
in a low-dissipative (superconducting) transmission line
are extremely suitable in order to realize such quantum
metamaterials.

Indeed, diverse SQUIDs subject to an externally
applied magnetic field can be modeled by a double-well
potential for a single degree of freedom, i.e. the Josephson
phase [4]. Although the quantum-mechanical versus classical
description of such systems is still under debate [5, 6],
we believe that at low temperatures, as the dissipative
effects are small and as the potential barrier between two
classical states is rather small, the coherent tunneling between
two states results in two low-lying energy levels. These
energy levels are well separated from other levels and
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the energy level difference 1 is tunable by an externally
applied magnetic field. Such energy level diagrams and
the coherent quantum beating between two states have
been observed experimentally in diverse superconducting
systems [7–10] and, therefore, superconducting systems show
a good potential to be implemented as qubits.

A strong long-range interaction between well-separated
qubits is provided by a transmission line through emission
(absorption) of virtual photons. This type of interaction was
proposed in [11–15] and realized in experiments with single
qubits incorporated in a resonator [16, 17]. It has been
shown that a strong interaction between well-separated qubits
results in an enhancement of quantum-mechanical tunneling
[15, 18, 19] and suppression of decoherence induced by a
spread of parameters of qubits [20]. The measurements of
the frequency dependent transmission (reflection) coefficient
of electromagnetic field (EF) propagating through the
transmission line provide a convenient method to observe
coherent quantum phenomena in such metamaterials [21, 22].

On the other hand, a strong interaction of qubits with EF
can result in different states of photons in the cavity. Indeed,
in the absence of interaction with qubits the unique photon
state of the cavity is an incoherent, chaotic state of photons
characterized by a well-known Planck distribution, i.e. 〈Ê〉 =

0, 〈(Ê)2〉 ∝ [e
h̄ω0
kBT − 1]−1, where E is the electric field of

radiation, 〈· · ·〉 is the quantum-mechanical average, and ω0
is the frequency of the cavity mode. A strong interaction
of EF with qubits leads to the effective enhancement of
the difference in energy levels of the qubits which, in turn,
changes EF in the cavity. Thus, one can expect that in a
resonant cavity strongly interacting with an array of qubits
different states of photons can be observed. In this paper
we analyze possible quantum-mechanical states of photons
emerging in the resonant cavity strongly interacting with an
array of qubits. Notice here that a similar analysis of the
photon states of the cavity interacting with an unbiased array
of Josephson junctions has been reported in [23] in order to
explain the strong radiation from a 2D-array of Josephson
junctions observed in [24].

The paper is organized as follows: in section 2 we present
a model of an array of SQUIDs incorporated in a low-
dissipative transmission line and elaborate on the classical de-
scription of this system, i.e. the dynamic equations of motion
and the Lagrange function; in section 3 a complete quantum-
mechanical description of this model is provided. In section 4
using the great similarity with well-known phase transitions,
e.g. the metal–ferromagnet [25], metal–superconductor [26]
and the Peierls metal–insulator [27] transitions, we predict
and analyze a second-order phase transition between the
incoherent, chaotic state (the high-temperature phase) of
photons and diverse coherent non-classical photon states (the
low-temperature phase). Section 5 provides a discussion and
conclusion.

2. Model and classical description of
superconducting metamaterials

As a particular example of quantum metamaterials we
consider here a system of RF SQUIDs incorporated in a

Figure 1. The schematic of an array of RF SQUIDs incorporated in
a transmission line.

low-dissipative transmission line. The RF SQUIDs will be
modeled as tunable two-level systems. The inductive coupling
between RF SQUIDs and the transmission line provides an
interaction between cavity photons and two-level systems.
Each RF SQUID is characterized by a Josephson phase ϕi =

2π8i/φ0, where 8i is the total flux in the superconducting
loop of a SQUID and φ0 is the flux quantum. An application
of dc-magnetic field characterized by 8ext allows one to tune
the potential relief of a Josephson phase ϕi from a single
well up to a double-well potential. The set of RF SQUIDs is
incorporated in a linear transmission line. The transmission
line is characterized by two parameters L0 and C0, the
inductance and capacitance per unit length, respectively. We
also introduce the voltage V(x) and current I(x) distributions,
where x is the coordinate along a transmission line. The
inductive coupling, M = ηL0, provides an interaction between
RF SQUIDs and the transmission line. The schematic of the
system is presented in figure 1.

2.1. Classical equations of motion: linear transmission line

We start with the classical dynamic equations for a linear
transmission line. It is

∂V(x, t)

∂x
= L0

∂I(x, t)

∂t
(1)

and

∂I(x, t)

∂x
= C0

∂V(x, t)

∂t
. (2)

These two equations are rewritten as

∂2I(x, t)

∂x2 =
1

c2

∂2I(x, t)

∂t2
, (3)

where L0C0 = 1/c2. The electromagnetic standing waves
can occur in this 1D cavity resonator. The wavevectors
are determined by standard boundary conditions: kn =

πn/`, where ` is the size of a transmission line, n =
1, 2, . . . . We will consider a transmission line with an
extremely high quality factor, which was routinely obtained
in superconducting transmission lines and, therefore, only one
wavevector will be important in the dynamics of the coupled
RF SQUIDs and EWs of the cavity.
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2.2. Classical equations of motion: an individual SQUID

The classical dynamic equations for an individual SQUID are
written as

IRF/Ic = sin(ϕ)+
α

ωp

dϕ
dt
+

1

ω2
p

d2ϕ

dt2
, (4)

where Ic is the critical current of a Josephson junction, 1/α2

is the McCumber parameter characterizing the dissipation of
the SQUID and ωp is the plasma frequency of a Josephson
junction. On the other hand, the Josephson phase in a SQUID
loop is satisfied by the following equation

ϕ = ϕext − βLIRF/Ic, (5)

where βL is the inductive (dimensionless) parameter of the
SQUID, ϕext corresponds to the sum of the externally applied
dc-magnetic field and the ac-magnetic field induced by a
current flowing along the transmission line. Thus, ϕdc

ext allows
one to tune the potential relief of the Josephson phase and
ϕac

ext ∝ I provides a coupling between the RF SQUID and a
transmission line.

2.3. Classical equation of motion: coupled transmission line
and SQUIDS

Inductive coupling between RF SQUIDs and the transmission
line results in a particular change of classical equations of
motion: first, equation (3) changes to

∂2I(x, t)

∂x2 =
1

c2

∂2I(x, t)

∂t2
+

∑
i

η

c2

∂2I(i)RF(t)

∂t2
, (6)

where η is the parameter characterizing a mutual inductance
of RF SQUIDs and the transmission line; secondly, ϕac

ext =

(ηL0/φ0)I(xi, t).

2.4. Lagrangian of a superconducting metamaterial

The classical equations of motion can also be derived from the
Lagrangian of a whole system

L =
L0

2
(Q̇(x, t))2 −

1
2C0

(
∂Q(x, t)

∂x

)2

+ EJ

∑
i

1

2ω2
p
[ϕ̇i]

2

−
1

2βL
[ϕi − ϕ

dc
ext + (ηL0/φ0)Q̇(x, t)]2

− (1− cosϕi), (7)

where Q(x, t) is the charge variable characterizing a
transmission line and EJ = h̄Ic/(2e) is the energy of the
Josephson junction. To simplify this expression we consider
the standing EWs with a single wavevector kn only. In this
case the charge variable Q(x, t) has the form: Q(x, t) =
Q(t) cos(knx). Substituting this expression in equation (7) we
obtain

L = Lph + LSQUID + Lint,

where

Lph = m

[
1
2
(Q̇(t))2 −

c2k2
n

2
(Q(t))2

]
, m = L0`/2, (8)

and

LSQUID = EJ

∑
i

1

2ω2
p
[ϕ̇i]

2
−

1
2βL
[ϕi − ϕ

dc
ext]

2

− (1− cosϕi), (9)

and

Lint = −
∑

i

(ηL0/80)
EJ

βL
ϕi cos(knxi)Q̇(t), (10)

where xi are the coordinates of RF SQUIDs along a
transmission line.

3. Quantum description of superconducting
quantum metamaterials

3.1. Photon Hamiltonian

Introducing the ‘momentum’ of a photon field P(t) as P =
(L0`/2)Q̇(t) we obtain the Hamiltonian of a photon field in
the following form:

Hph =
P2

`L0
+

L0`c2k2
n

4
[Q(t)]2. (11)

Next we introduce the operators of the boson field b̂ and b̂+

as

Q̂(t) =

√
h̄

cknL0`
(b̂+ b̂+)

and

P̂(t) = −i

√
h̄cknL0`

4
(b̂− b̂+).

Using these new variables the photon Hamiltonian is written
as

Hph = h̄ω0(b̂
+b̂+ 1/2), ω0 = ckn. (12)

3.2. RF SQUID Hamiltonian

We consider the macroscopic quantum dynamics of the RF
SQUID when the potential energy has the form of double-well
potential. In this case the Hamiltonian of a system of isolated
RF SQUIDs is written as

HSQUID =
∑

i

1
2 [1iσ̂x + εiσ̂z], (13)

where σz and σx are standard Pauli matrices, 1i and εi are
the matrix element of tunneling and the energy difference
between two potential wells, respectively. Notice here that
such a Hamiltonian can also be used for more complex qubits,
e.g. phase qubits, flux qubits etc, where parameters 1i and εi
are determined by the physical properties of the corresponding
qubits. For qubits based on RF SQUIDs we obtain

1 ∝ h̄ωp(1− 1/βL)
1/2e
−

4
√

2EJ
h̄ωp

(1−1/βL)
3/2

(14)

and

ε ∝ π
√

6(1− 1/βL)
1/2(φext/φ0 − 1). (15)
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Moreover, the parameters 1i and εi can fluctuate from one
qubit to other one.

3.3. Interaction Hamiltonian

The equilibrium dynamics of a Josephson phase in
imaginary time representation can be presented as rare jumps
(the instanton type of solution) between two equilibrium
positions [28]. Using this property we obtain the interaction
Hamiltonian as follows:

Hint = i
∑

i

ξiσ̂z(b̂− b̂+),

ξi =
EJη(δϕ)

√
h̄cknL0`

βLφ0
(16)

where δϕ is the phase difference between two equilibrium
positions of a Josephson phase.

3.4. Effective action

In order to study the various photon states arising
in superconducting quantum metamaterials we write the
partition function Z in the form of a functional integral as

Z =
∫

DQD{ϕi} exp(−S{Q, ϕi}), (17)

where S is the action of EF interacting with an array of
two-level systems. Integrating equation (17) over {ϕi} we
obtain the effective action Seff in the following form [29]:

Seff[Q(τ )] =
1
h̄

∫ h̄/(kBT)

0
dτ

m

2
[Q̇2
+ ω2

0Q2
]

− kBT
∑

i

ln
[

cosh
αi{Q}

2kBT

]
, (18)

where αi{Q(τ )} are the positive Floquet eigenvalues of arrays
of two-level systems in the presence of the potential Q(τ ),
which is periodic in imaginary time. Notice here that in the
absence of interaction with the field Q(τ ), i.e. as ξi = 0, the

Floquet eigenvalues are αi(0) =
√
12

i + ε
2
i and the minimum

of Seff[Q(τ )] occurs as Q = 0.

4. Phase transitions in states of photons

Since the interaction term in the Lagrange function Lint
depends on the τ -derivative of Q, i.e. Q̇, we introduce a new
variable of the momentum of a photon field P(τ ) = mQ̇ and
rewrite the effective action Seff as

Seff[P(τ )] =
1
h̄

∫ h̄/(kBT)

0
dτ

1
2m

[
P2
+

1

ω2
0

Ṗ2

]

− kBT
∑

i

ln
[

cosh
αi{P}

2kBT

]
. (19)

Moreover, the Floquet eigenvalues αi(P) are determined from
the following equation:

(∂τ + Ĥi
P)ψi = 0;

ψi(τ + 1/kBT) = e−αi/kBTψi(τ )
(20)

and the Hamiltonian Hi
P is:

Ĥi
P =

(
εi + η̃iP(τ ) 1i

1i −(εi + η̃iP(τ ))

)
, (21)

where the parameter determining the interaction between
cavity modes and two-level systems η̃i =

η(δϕi)EJ
80βL

cos(knxi).
Next, we obtain the periodic in imaginary time

representation function P0(τ + 1/kBT) = P0(τ ), minimizing
the effective action, as a solution of the following equation:

P0

m
+

1

mω2
0

P̈0 =
∑

i

∂αi

∂P
tanh

(
αi{P0}

2kBT

)
. (22)

4.1. Classical second-order phase transition

First we consider a particular case as the momentum of
a photon field P0 does not depend on τ . The Floquet

eigenvalues are determined as αi(P) =
√
(εi + η̃iP0)2 +1

2
i

and the equation for P0 reads as

P0

m
=

∑
i

η̃i
(εi + η̃iP0)√

(εi + η̃iP0)2 +1
2
i

× tanh


√
(εi + η̃iP0)2 +1

2
i

2kBT

 . (23)

In the simplest case as εi = 0 and η̃i = η̃ we obtain the
self-consistent equation

P0

 1

mη̃2 −
∑

i

1√
η̃2P2

0 +1
2
i

tanh


√
η̃2P2

0 +1
2
i

2kBT


= 0. (24)

At high temperatures, T > T?, this equation has a single
solution P0 = 0. Such a high-temperature phase corresponds
to the incoherent, chaotic state of a photon field. However,
at low temperatures, T < T?, equation (24) has two non-zero
solutions of ±P0 and the coherent state of a photon field can
be realized. Therefore, we obtain a second-order type of phase
transition in the states of photon field interacting with a set of
two-level systems. The critical temperature T? depends on the
distribution of the energy differences of two-level system 1i.
If such a distribution is a narrow one, i.e. 1i ' 1, we obtain
the value of T? as

T?n =
mη̃2N

kB
, (25)

where N is the total number of two-level systems. Such
a phase transition occurs only if 10 < kBT?n . At low
temperatures P0 reaches the maximum value of P0 = ±mη̃N.
As one can see the maximum value of P0 is proportional
to N and this dependence also indicates the presence of the
coherent state. The dependence of P0(T) for this case is shown
in figure 2 (red solid line). Notice here that this case resembles
a well-known metal–ferromagnet phase transition [25].
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Figure 2. The classical and quantum phase transitions in the state
of photons. The temperature dependences of the momentum of
photon field P0(T) are shown: τ -independent P0 (red line) and
P0(τ ) ∝ P0(T) sin(P0(T)τ ) (blue line). The case of a narrow
distribution of 1i ' 10 is shown. The parameters T?n = 20 K and
10 = 4 K were used.

In the opposite case of a wide distribution of 1i,
e.g. from zero to upper cut-off 10, the critical temperature
is determined as

T?w = 10e
−

10
mη̃2N . (26)

This phase transition occurs if 10 > mη̃2N. At low tem-
peratures P0 reaches the maximum value of |P0| ' kBT?w/η̃.
This phase transition resembles the superconductor–normal
metal [26] and/or Peierls metal–insulator [27] transitions.

4.2. Quantum phase transitions

Here we consider a phase transition into a peculiar ‘quantum
ordered’ state representing a quantum interference between
the two semi-classical states ±P0 of the photon field,
which are inversion symmetry related solutions of the
self-consistency equation (24). Each of the ±P0 states
separately describes a particular coherent state of the photon
field in our model. The quantum ordered state was predicted
in [29] for a system of electron–hole pairs coupled to a
semi-classical spin-density wave fluctuation. In our present
model it is described by the amplitude of the semi-classical
photon field P0(τ ) or the ‘quantum order parameter’, which
is the periodic in imaginary time solution of equation (22).
Again we consider the simplest case as εi = 0 and η̃i = η̃ and
apply the analytical solution found in [29, 30]:

η̃P0(τ ) = 4nkBKTk1sn(4nkBKTτ ; k1),

K = K(k1)
(27)

where sn(τ, k1) is the Jacobi snoidal elliptic function, periodic
in τ with period 1/(nkBT), n = 1, 2, . . . , K(k1) is an elliptic
integral of the first kind and positive integer n and real
parameter 0 < k1 < 1 are found by minimizing the Euclidean
action Seff given in equation (19). Here we merely describe
a single-harmonic limit k1 → 0 of solution equation (27). In
this limit the expression for P0(τ ) in equation (27) turns into:

η̃P0(τ ) ≈ 2πnkBTk1 sin(2πnkBTτ). (28)

Simultaneously, it was shown in [30] that the solution in the
form of equation (27) leads to the following spectrum of the
Floquet eigenvalues αi(P) found from equation (20):

αi = 2kBT1̃i

(
1− k2

+ 1̃2
i

1+ 1̃2
i

)1/2

n5

(
k2

1+ 1̃2
i

, k

)
. (29)

Here 5(m, k) is an elliptic integral of the third kind, and
besides:

1̃i ≡
1i

2nkBTK(k)
, k = 2

√
k1/(1+ k1);

k′2 = 1− k2.
(30)

The latter relation between parameters k1, k is known as a
Landen transformation [31]. The Jacobi function M(τ ) =
M(τ + 1/nkBT) from equation (27) turns the generic
self-consistency equation (22) into an algebraic equation for
parameters k, n [29]:∑

i

[
tanh

αi

2kBT

]
1̃i

{(1̃2
i + 1)(1̃2

i + k′2)}1/2
=

1

mη̃2 . (31)

It is not hard to see that in the limit k′ → 0 equation (31)
transforms into the classical mean-field self-consistency
equation (24), while in the limit k′ → 1 the self-consistency
equation (31), as follows from equations (29) and (30), turns
into the equation:∑

i

[
tanh

1i

2kBT

]
1i

12
i + (πnkBT)2

=
1

mη̃2 . (32)

Now making comparison with the equation (24) for the
classical photon condensate P0 it is possible to conclude that
in the case of a narrow distribution of energy differences of the
two-level systems 1i ≈ 10 and strong coupling constant to
the electromagnetic field: 10 < mη̃2N, the quantum ordered
phase (QOP) of the photon field occurs below the temperature:

TQOP
n ∝

[
12

0mη̃2N

π2

]1/3
1

kB
. (33)

Since the amplitude of P0(τ ) is proportional to 4nkBKTk1
in accordance with equation (27), this result suggests that
the number of photons condensed into the quantum ordered
phase is ∝ N1/3, where N is the number of two-level systems.
Hence, this dependence indicates the presence of the coherent
state also in the quantum ordered phase, but with less strong
entangling than in the classical photon condensate described
by equation (24). In the opposite case of a wide distribution
of 1i and weak coupling constant 10 > mη̃2N we find a
transition temperature similar to the classical mean-field case
equation (26):

TQOP
w =

10

π
e
−

10
mη̃2N . (34)

In both cases, when temperature drops well below TQOP
n,w the

increase of the integer number n ∝ 1/T of the oscillations
of the quantum order parameter P(τ ) along the imaginary
time-axis τ within the Euclidean space temporal interval

5
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[0, 1/T] keeps the QOP amplitude 4nkBKTk1 finite and
non-vanishing up to the T = 0 K state according to
equation (27). Thus, we can conclude that the quantum phase
transition in the photon states is the first-order type of phase
transition.

5. Discussion and conclusions

In section 4 we obtained classical and quantum second-order
phase transitions in the states of photons that can emerge
in a resonant cavity strongly interacting with an array of
two-level systems. For the classical phase transition we obtain
that at low temperatures, T < T?, the incoherent photon state
(with P0 = 0) becomes unstable. Two novel photon states
characterized by non-zero values of the momentum of photon
field ±P0(T) can appear at low temperatures. These photon
states are the coherent photon states well known in quantum
optics [32]. The average number of photons in these states
n̄ = P2

0/(2mh̄ω0). The temperature dependence of P0(T) is
determined by equation (24) and is shown in figure 2 (red
solid line). The value of T? is determined by equations (25)
and (26). The critical temperature T? depends strongly on the
distribution of energy differences 1i, the number of qubits
N and the strength of interaction η̃. For example, we obtain

an expression for T?n as T?n =
`E2

J
4C0kBc282

0
[(δϕi)

2η2N/β2
L] =

Teff
(δϕi)

2η2N
β2

L
. For typical parameters ` = 1 cm,C0 = 8.8 ×

10−12 F m−1 and EJ = 10−2 eV the effective temperature
is Teff ' 50 K. Thus, for reasonable values of parameters,
T? varies from 100 mK up to 50 K. This phase transition
is similar to a well-known metal–ferromagnet transition and
the momentum of the photon field ±P0(T) corresponds to the
‘Weiss effective magnetic field’ in a theory of ferromagnetic
materials [25].

Notice here that these two coherent photon states,
corresponding to the +P0(T) and −P0(T) values, are the
degenerate ones. In this case quantum beating between these
two states can be observed in the system. The quantum beating
between two photon states results in a splitting of resonant
frequencies of the cavity, i.e. ωres = ω0 ± 1ω. The splitting
1ω is obtained as follows: the two stable photon states are
separated by the effective potential barrier 1U ' mN2η̃2 (for
T = 0) and, therefore,1ω ' ω0 exp[−1U/(h̄ω0)]. The effect
of the splitting of resonant frequencies is a consequence of
the degeneracy of the photon states. Such a degeneracy can
be lifted by application of an external magnetic field allowing
one to realize a non-symmetric double-well potential for RF
SQUIDs, i.e. as εi 6= 0. In this case a single coherent state of
photons with P0 ∝

∑
iεi emerges in the cavity.

We obtained also that different metastable states of
photons can be obtained in this system. In these states
there is no net classical photon condensate, but there exists
a macroscopic quantum condensate (with amplitude of the
photon momentum P ∝ N1/3, where N is the number of
two-level systems) that has a zero mean value of the
electromagnetic field. These states appear as a result of a
first-order phase transition.

In conclusion we have shown that superconducting
quantum metamaterials can support the diverse non-classical
photon states. As a particular example of such a metamaterial
we considered an array of RF SQUIDs incorporated in
a low-dissipative resonant cavity. We mapped this system
onto a set of two-level systems (qubits) strongly interacting
with photons of the cavity. By making use of a complete
quantum-mechanical description of such a system we found
that at high temperatures, T > T?, the incoherent chaotic state
of photons is a stable one. At low temperatures, T < T?, a
large number of different photon states emerges in the cavity.
These photon states appear as a result of specific classical (the
second-order type) or quantum (the first-order type) phase
transitions. The physical origin of such phase transitions
is as follows: a strong interaction of EF with two-level
systems leads to the effective enhancement of the difference
in energy levels of the qubits which, in turn, changes the
EF in the cavity. The order parameter of phase transitions
is the τ -dependent momentum of photon field P0(τ ). In the
case of the classical phase transition, as P0(τ ) = const the
coherent photon states and the quantum superposition of two
coherent photon states can be obtained in the cavity. In the
case of quantum phase transitions, the different metastable
photon states characterized by a complex dependence of P(τ )
(see equation (27)) can also be realized.
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