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Quantum Left-handed metamaterial with

superconducting quantum interference devices
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A scheme of left-handed metamaterial (LHM) composed of superconduct-

ing quantum interference devices (SQUIDs) and conducting wires is proposed.

The permeability of a probe field can be smoothly tuned over a wide range

with another electromagnetic (coupling) field due to quantum interference ef-

fect. Similar to electromagnetically induced transparency (EIT) of atomic

systems, the absorption of the probe field can be strongly suppressed even

in the case of negative permeability. There are two passbands of negative

refractive index with low loss, which can be tuned with the coupling field.

PACS numbers: 42.50.Gy, 78.20.Ci, 03.67.Lx, 42.50.Ct, 32.80.Qk

Recently, research on left-handed materials (LHMs)[1] has attracted con-

siderable attentions. The LHMs are a kind of metameterial which have nega-

tive permittivity and negative permeability , which lead to negative refractive

index in a narrow frequency band. Many novel phenomena can occur on LHM

such as superprism, perfect flat lens, inverse light pressure, and reverse Doppler

and Vavilov-Cherenkov effects . Large nonlinearity can also occur, e.g. the

bistable transition of permeability from positive to negative[2]. The quan-

tum phenomena in LHMs have also attracted attentions such as the modified

spontaneous emission of atoms in LHM [3, 4]. However, the background of the

ordinary LHM such as array of conductor lines and slit-ring resonators (SRRs)
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is a ’classical’ system where the negative ǫ and negative µ arise from the clas-

sical plasma oscillations. In this sense, the ordinary LHMs are quite different

from quantum systems such as atomic gases. On the other hand, in ordinary

situations, the magnetic response of atomic gases to a laser field is too weak

to generate negative permeability. How to enhance the magnetic response of a

quantum system is essential to realize LHMs at optical frequency band. There

may be other ways to obtain negative permeability, e.g., recently, a scheme

of electromagnetically-induced left-handedness in atomic gases is proposed[5],

where large density of atoms is necessary and special restrictions on frequencies

of driven fields and atomic transitions are required. In contrast, an artificial

quantum system with high magnetic sensibility can has much more advantage

than atomic systems to realize negative permeability.

In this letter we propose a new kind of LHM composed of superconducting

rings with Josephson junctions and conductor wires. For simplicity, the wires

are assumed to be normal conductors. It should be note that quite different

from our work, recently analysis and design of superconducting transmission

lines are presented by Salehi et al [6], and more recently, Ricci et al have ex-

perimentally researched on a metamaterial that employs superconducting Nb

metals and low-loss dielectric materials, in which case negative effective index

passband are seen between 50MHz to 18GHz [7]. The focus of our work is on

the negative permeability which arises from quantum feature of the compos-

ite. In contrast with the ’classical’ SRR, in our model the split of the ring is

replaced by a Josephson junction, which is essential to the quantum feature

of the LHM. We will show analytically that due to the quantum interference

effects[8] the permeability can be tuned over a wide range with an external

microwave field. Also, we will show that the absorption of the medium for the

probe field can be strongly suppressed even in the case of negative refractive

index.
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A scheme for supperconducting LHM is show in Fig.1, where the compos-

ite is composed of superconducting rings with Josephson junctions, and, an

effective electric medium with effective electric permittivity ǫ as a background,

which, e.g., can be an array of normal conducting wires. The radius of the

ring is denoted by a , and the period of the array is denotd by d. Schematic of

the potential energy and the first six eigen energies of the SQUID is shown in

Fig. 2. We assume a probe microwave field is interacting with the composite.

The wavelength of the field is assumed to be much longer than the period,

i.e., d << λ. For a classical cylindrical SRR system, the permeability µ can

be given by the relation (according to Ref.[2])

B(ω) = Hx(ω) + FH ′(ω), (1)

where Hx(ω) is the alternating external magnetic field and H ′(ω) is the addi-

tional magnetic field induced by Hx(ω), which determines the magnetization

of the composite, and F = πa2/d2 is the fraction of the structure with a

being the radius of the ring and d being the periodicity of the array. Also,

a << d << λ is assumed.

The permeability at angular frequency ω can be given by

µ(ω) = 1 + F
φ(ω)

φx(ω)
, (2)

where φ(ω) is the flux of frequency ω induced by the external microwave field,

i.e. φ(ω) = H ′s with s = πa2 being the area of the ring. For the quantum

LHM here, the SRRs are replaced by the SQUIDs, then φ(ω) becomes an

operator although the external driven fields are assumed to be classical. In

order to calculate µ, φ(ω) in Eq. (2) should be replaced by the quantum

averaging of it, i.e. < φ(ω) >.

The Hamiltonian of a SQUID (a ring with a Josephson junction) can be

given by[9]

H0 = −
h̄

2m

∂

∂x2
+ V (x) (3)
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with the potential of the SQUID being

V (x) =
1

2
mω2

LC(x− x′) −
1

4π2
mω2

LCβcos(2πx) (4)

where x = φ/φ0, m = Cφ2
0, ω

2
LC = 1

LC , β = 2πLIc/φ0, and x′ = φx/φ0.

Here φ is the total flux in the ring, L is the ring inductance, φx is an external

applied magnetic flux to the SQUID, Ic is the critical current of the junction,

C is the capacitance of the junction, and φ0(= h/2e) is the flux quantum.

We consider a realistic SQUID system which can be described by use of the

parameters as in the work of Zhou etal [9], where L = 100pH, C = 40fF , and

Ic = 3.95µA, leading to ωLC = 5 × 1011rad/s, and β = 1.2. The external DC

magnetic field parameter x′ is taken to be −0.501.

The interaction between the SQUID and microwave fields, which are as-

sumed to be linearly polarized with their magnetic field perpendicular to the

plane of the SQUID ring, is described by the time dependent potential

Vint(x, t) = mω2
LC(x− x′)(εcosωt+ εccosωct). (5)

In the interaction picture ,the dynamics of the system is governed by the

Schrödinger equation

ih̄
∂

∂t
|ψ(t) >= Vint|ψ(t) > . (6)

Here ε, εc are microwave magnetic flux of the probe field and the coupling

field in units of φ0. The frequency of the probe field and the coupling field are

chosen near resonant with transition |0 > −|n > and |1 > −|n >) respectively,

where |n > denotes the n-th eigen state of H0. This is usually referred to as

the three-level approximation. In this case, the wave function can be written

as

|ψ(t) >= c0(t)|0 > +c1(t)|1 > +cn(t)|n >, (7)

and the interaction Hamiltonian after the rotating-wave approximation, can
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be written as [9]

Vint = h̄(Ωeiδt|0 >< n|+Ωce
−iδct)|1 >< n|+h.c.−i

γ1

2
|1 >< 1|−i

γn

2
|2 >< 2|).

(8)

Here the Rabi frequency Ω and Ωc are defined as

Ω = −x0nmω
2
LCǫ/h̄, Ωc = −x1nmω

2
LCǫc/h̄, (9)

where x0n and x1n are defined as < 0|x|n > and < 1|x|n > respectively. Also,

here δ = ω − ω0n, δc = ωc − ω1n, γ1 and γn are the background decay rate of

the state |1 > and |n >. The equations for amplitudes c0, c1, and cn can be

easily obtained from Eq.(6) as

idc0
dt = Ω

2 cn

idcn

dt = −(δ + iγn

2 )cn + Ω
2 c0 + Ωc

2 c1

idc1
dt = −(δ − δc + iγ1

2 )c1 + Ωc

2 cn

, (10)

We assume that γ1 << γn, where γn can be taken to be about 1GHz according

to Ref. [10, 8]. We assume that initially the system is prepared in the ground

state |0 >, and for simplicity, we assume the probe field is weak enough, i.e.

Ω << γn,Ω << Ωc. In this case the steady-state solution can be obtained as

in ordinary EIT systems.

It is easy to prove that the mean value of the flux (< φ(ω) >) can be given

by

< φ(ω) >

φx(ω)
= −α

c∗0c1
Ω

, (11)

where α =
mω2

LC
x2

0n

h̄ =
φ2

0

h̄Lx
2
0n. Here α is a parameter measures the sensibility of

the effective medium to the probe field, which has the dimensions of frequency

(Hz). For n = 4, x04 = 5.39798 × 10−3, which is given by Ref.[11, 12]. Taking

L = 100pH, we obtain α = 11.815GHz. This value will be used in the following

analysis.

We first consider the case of Ωc = 0, i.e. of two-level system (non-EIT
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system). According to Eq.(2),(11) and (10), the permeability can be give by

µ = 1 −
F

2

α

δ + iγ4/2
(12)

, It is clearly a Lorentz profile. When the probe field is near resonant with the

transition |0 > −|n >, strong absorption will occur. The absorption becomes

sharp with the decrease of γ4. Similar to classical SRR composite, negative µ

can occur (see Fig. 3(a)) if α is large enough. The condition for the negative

µ can be easily deduced from Eq. 12 as that Fα > 2γ4. Also, it is clear that

there is only one frequency band of negative Re(µ). However , it is worth to

note that the µ-spectrum for the quantum composite here is similar but not

the same as that in classical composite[2].

If the coupling field is applied to the system (Ωc 6= 0), the magnetic

response could be significantly modified. For a strong coupling field, i.e.

Ωc >> Ω, γ4, from Eq.(2),(11) and (10), the permeability can be given by

µ = 1 −
F

2

α
(

δ − δc + iγ1

2

)

(

δ − δc + iγ1

2

) (

δ + iγ4

2

)

− Ω2
c

4

. (13)

The spectrum of µ in three-level case is show in Fig. 3(b). It can be easily

seen that the transparency occurs when δ = δc = 0, which is similar to EIT of

atomic system except that here the coupling field is used to control the per-

meability µ instead of the permittivity ǫ of the probe field. Superconductive

analog to electromagnetically induced transparency that utilizes superconduc-

tive quantum circuit designs of present day experimental consideration has

also been investigated by Muralial et al [8]. The width of the transparency

window can be defined by the frequency distance between the two absorption

peaks which is about Ωc due to Autler-Townes splitting. The frequency band

for low absorption and large refraction can occur over a wide range for large

Ωc. On the contrary, the group velocity of the probe field can be reduced to

near zero as in atomic EIT systems. If Fα is very small, µ is positive for all

probe detunings (δ), which can be easily seen from Eq.(13). If Fα is large
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enough, however, negative Re(µ) can occur near the transparency window.

The condition for negative µ can be deduced from Eq. (13) as that

Fα > 2γ4. (14)

This condition is the same as that for nonEIT case, but the frequency band

for negative µ in the EIT case and nonEIT case is quite different. In the EIT

case there are two frequency bands for negative µ, which can be given by

f−(x−) < δ/γ4 < f−(x+); f+(x−) < δ/γ4 < f+(x+), (15)

where

f±(x) =
x±

√

x2 + Ω2
c/γ

2
4

2
, (16)

and

x± =
1

2
(g ±

√

g2 − 1) (17)

with g = Fα
2γ4

(> 1)

For example, we consider the case of α = 11.815GHz as above. If taking

F = π × 0.14, we can obtain that Fα/2 = 2.5982GHz. In this case negative

Re(µ) can occur if the condition γ4 < 2.5982GHz is met.

It should be note that, when δ = δc and γ1 = 0, exactly zero absorption

occcur (Im(µ) = 0), but in this case Re(µ) = +1. When Re(µ) is negative,

Im(µ) is always nonzero, i.e. negative refractive index without loss can never

occur. However, the absorption can be strongly suppressed near the condition

of δ = δc. It is similar to ordinary EIT in atomic systems, but here the

zero absorption occurs due to magnetic response instead of electric response,

and, here, the magnetic is so strong that negative Re(µ) can occur near EIT

condition. The permeability (µ) can be smoothly tuned over a wide range with

the coupling detuning δc (see Fig. 4) and its Rabi frequency Ωc (see Fig.(5)). It

is worth to note that the tunability is due to the quantum interference effect

which is absent in classical normal conductor systems. The permeability µ
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and refractive index n can be smoothly tuned by the coupling field over a

wide range, and the continuous transition from Re(µ) = 1 to Re(µ) = −1 is

possible. From the µ-spectrum it is easy to see that there are four frequencies

for Re(µ) = −1, but only two of them are for low loss (small Im(µ)), one of

which is in EIT window, while the other one is out of EIT window. It is should

be note that both of them can be tuned with the coulpling field. For this two

frequencies, Im(µ) → 0 when γ4 → 0 and γ1 → 0.

In order to calculate the refractive index, the permittivity ǫ and perme-

ability µ can be written as

ǫ = |ǫ|eiφe , µ = |µ|eiφm , (18)

where 0 < φe < π, 0 < φm < π. Then the refractive index n can be given by

[3]

n =
√

|ǫ||µ|ei(φe+φm)/2 (19)

For the sake of simplicity, we consider the case where the effective electric

permittivity ǫ is generated by an array of normal conducting classical current

wires[3, 2]. In this case

ǫ = 1 +
ω2

pe

ω2
Te − ω2 − iωγe

(20)

where ωpe and ωTe are the parameters which measure the effective plasma os-

cillations and γe measures the loss of the wires. The refractive index spectrum

of the composite is shown in Fig. (6), where (a) is for ǫ(δ), (b) is for µ(δ), and

(c) is for n(δ). For simplicity, we consider the frequency band of negative ǫ

which is far from resonance, in which case ǫ is slowly varing with δ, and Im(ǫ)

is small. We find in this case there are two minima on the Im(n)-spectrum.

The absorption minima arise from two reasons: (1) small Im(ǫ) and small

Im(µ); (2)Re(µ) and Re(ǫ) are simultaneously negative. On the contrary, if

Re(µ)Re(ǫ) < 0, Im(n) will be large even if both of Im(µ) and Im(ǫ) are in-

8



finitely small. Two passbands of negative refractive index appear around the

two minima, both of them are sensitive to the coupling field.

In conclusion, we have analytically investigated the metamaterial com-

posed of superconducting rings with Josephson junctions and conducting wires.

It is found that negative permeability for a probe microwave field can occur

when g = Fα
2γ4

> 1. There are two passbands of negative refractive index with

low loss, which can be tuned with the coupling field. To our knowledge, it

is for the first time that the quantum left-handed metamaterial being com-

posed of SQUIDs has been investigated. One of the advantages of this kind

of LHM is that the negative refractive index with low loss is easy to obtain

due to that the permeability can be smoothly tuned over a wide range includ-

ing µ = ±1 + iε (ε → 0+). In the quantum composite, some new physics

could be found, such as that associated with transient properties of the left-

handedness, large nonlinearity due to the quantum interference effect and that

due to strong magnetic response of the composite. Also, the tunability of the

composite via quantum interference effect could be used in quantum informa-

tion process [13]. On the other hand, the LHM with SQUIDs can be regarded

as a bridge between the ’classical’ LHMs (e.g. composed of SRRs and wires)

and the ’quantum’ systems composed of microscopic particles(e.g. atoms or

quantum dots). Hence, further research on the quantum LHM could facilitate

the realizing of the tunable LHMs of high-frequency (towarding to optical)

band.
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Figure Captions

Fig. 1. Schematic of the composite metamaterial structure composed of

superconducting rings with Josephson junctions (SQUIDs) and the effect

electric medium such as conductor wires. Each SQUID is an artificial

Λ-configuration three-level system which coupled with a probe microwave

field and a coupling microwave field.

Fig. 2. Schematic of the potential energy and the first six eigen energies of

the SQUID. The energies of the ground state |0 >, meta-stable state |1 >,

and the excited state |4 > are 7.81984mev, 7.90183mev, and 8.14057mev,

respectively.

Fig. 3. Real part (solid curve) and imaginary part (dashed curve) of the

permeability (µ) versus the probe detuning δ for δc = 0, where F = π × 0.14,

γ4 = 0.0423, γ1 = 0.1γ4, β = 1.2, x′ = −0.501. (a) is for Ωc = 0 and (b) is for

Ωc = 0.5078. All parameters are in units of α, which is taken to be

11.815GHz.

Fig. 4. Real part (solid curve) and imaginary part (dashed curve) of the

permeability (µ) versus the coupling detuning δc for the case of δ = 0. The

parameters are the same as that in Fig. 3

Fig.5. The band edges of negative Re(µ) versus the Rabi frequency of the

coupling field Ωc. Negative Re(µ) occurs when δ is between the two solid

curves (band1) or that between the dashed curves(band2). The parameters

are the same as that in Fig.3.

Fig.6. The spectrum of permittivity(a), permeability(b), and refractive

index(c), where ωpe = 1.5ω04, ωTe = 0.43ω04, γe = 0.1ω04. The solid line is

for the real part of them, while the dashed line is for the imaginary part of

them. Here ω04 = 48.727GHz. Other parameters are the same as that in
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Fig.3.
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