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A rf superconducting quantum interference device �SQUID� array in an alternating magnetic field is
investigated with respect to its effective magnetic permeability, within the effective medium
approximation. This system acts as an inherently nonlinear magnetic metamaterial, leading to
negative magnetic response, and thus negative permeability above the resonance frequency of the
individual SQUIDs. Moreover, the permeability exhibits oscillatory behavior at low field intensities,
allowing its tuning by a slight change of the intensity of the applied field. © 2007 American Institute
of Physics. �DOI: 10.1063/1.2722682�

A rf superconducting quantum interference device
�SQUID� consists of a superconducting ring interrupted by a
Josephson junction �JJ�.1 When driven by an alternating
magnetic field, the induced supercurrents around the ring are
determined by the JJ through the celebrated Josephson rela-
tions. This system exhibits rich nonlinear behavior, including
chaotic effects.2 Recently, quantum rf SQUIDs have attracted
great attention, since they constitute essential elements for
quantum computing.3 In this direction, rf SQUIDs with one
or more zero and/or � ferromagnetic JJs have been
constructed.4 In this letter we show that rf SQUIDs may
serve as constitual elements for nonlinear magnetic metama-
terials �MMs�, i.e., artificial, composite, and inherently
nonmagnetic media with �positive or negative� magnetic re-
sponse at microwave frequencies.

Classical MMs are routinely fabricated with regular ar-
rays of split-ring resonators �SRRs�, with operating frequen-
cies up to the optical range.5 Moreover, MMs with negative
magnetic response can be combined with plasmonic wires
that exhibit negative permittivity, producing thus left-handed
�LH� metamaterials characterized by negative refraction in-
dex. Superconducting SRRs promise severe reduction of
losses, which constrain the evanescent wave amplification in
these materials.6 Metamaterials involving superconducting
SRRs and/or wires have been recently demonstrated
experimentally.7 The effect of incorporating superconductors
in LH transmission lines has been also studied.8 Naturally,
the theory of metamaterials has been extended to account for
nonlinear effects.9–13 Nonlinear MMs support several types
of interesting excitations, e.g., magnetic domain walls,11 dis-
crete breathers,12 and envelope solitons.13 Regular arrays of
rf SQUIDs offer an alternative for the construction of non-
linear MMs due to the nonlinearity of the JJ.

Very much like the SRR, the rf SQUID �Fig. 1�b�� is a
resonant nonlinear oscillator, and similarly it responds in a
manner analogous to a magnetic “atom” in a time-varying

magnetic field with appropriate polarization, exhibiting a
resonant magnetic response at a particular frequency. The
SRRs are equivalently RLC circuits in series, featuring a
resistance R, a capacitance C, and an inductance L, working
as small dipoles. In turn, adopting the resistively and capaci-
tively shunted junction model for the JJ,1 the rf SQUIDs are
not dipoles but, instead, they feature an inductance L in se-
ries with an ideal Josephson element �i.e., for which
I= Ic sin �, with � the Josephson phase�, shunted by a ca-
pacitor C and a resistor R �Fig. 1�c��. However, the fields
they produce are approximately those of small dipoles, al-
though quantitatively they are affected by flux quantization
in superconducting loops. Consider a rf SQUID with loop
area S=�a2 �radius a�, in a magnetic field of amplitude He0,
frequency �, and intensity Hext=He0 cos��t� perpendicular
to its plane �t is the time variable�. The field generates a flux
�ext=�e0 cos��t� threading the SQUID loop, with �e0

=�0SHe0 and �0 the permeability of the vacuum. The flux �
trapped in the SQUID ring is given �in normalized variables�
by

f = fext + �i , �1�

where f =� /�0, fext=�ext /�0, i= I / Ic, �=�L /2��LIc /�0, I
is the current circulating in the ring, Ic is the critical current
of the JJ, L is the inductance of the SQUID ring, and �0 is
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FIG. 1. Schematic drawing of the SQUID array, along with the equivalent
circuit for a rf SQUID in external flux �ext.
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the flux quantum. The dynamics of the normalized flux f is
governed by the equation

d2f

d�2 + �
df

d�
+ � sin�2�f� + f = fext, �2�

where C and R are the capacitance and resistance, respec-
tively, of the JJ, �=L�0 /R, �=�0t, �0

2=1/LC, and

fext = fe0 cos�	�� , �3�

with fe0=�e0 /�0 and 	=� /�0. The small parameter � ac-
tually represents all of the dissipation coupled to the rf
SQUID.

An approximate solution for Eq. �2� may be obtained for
	 close to the SQUID resonance frequency �	�1� in the
nonhysteretic regime �L
1. Following Ref. 14 we expand
the nonlinear term in Eq. �2� in a Fourier-Bessel series of the
form

� sin�2�f� = − �
n=1

�
�− 1�n

n�
Jn�n�L�sin�2�nfext� , �4�

where Jn is the Bessel function of the first kind, of order n.
By substiting Eq. �3� in Eq. �4� and carrying out the Fourier-
Bessel expansion of the sine term, one needs to retain only
the fundamental 	 component in the expansion.15 This leads
to the simplified expression

� sin�2�f� � D�fe0�cos�	�� , �5�

where D�fe0�=−2�n=1
� ��−1�n /n��Jn�n�L�J1�2�nfe0�. By sub-

stitution of Eq. �5� in Eq. �2�, the latter can be solved for the
flux f = f0 cos�	�+�� in the loop, with

f0 =
fe0 − D

	�2	2 + �1 − 	2�2
, � = tan−1
 − �	

1 − 	2� , �6�

where � is the phase difference between f and fext. The de-
pendence of D and f0 on fe0 for low field intensity is illus-
trated in Figs. 2�a� and 2�b�, respectively. For larger fe0 the
coefficient D approaches zero still oscillating, while f0 ap-
proaches a straight line with slope depending on 	 and �.
For �1 and not very close to the resonance, ��0. It is
instructive to express the �=0 solution as

f = ± �f0�cos�	��, �f0� = �fe0 − D�/�1 − 	2� . �7�

The plus �minus� sign, corresponding to a phase shift of 0
��� of f with respect to fext, is obtained for 	
1 �	�1�.
Thus, the flux f may be either in-phase �� sign� or in anti-
phase �� sign� with fext, depending on 	. This is confirmed
by numerical integration of Eq. �2�, as shown in Fig. 3,

where we plot separately the three terms of Eq. �1� in time.
The quantities f , fext, and �i are shown for two periods
T=2� /	 in each case, after they have reached a steady state.
For 	
1 �Figs. 3�a� and 3�b��, the flux f �green-dashed
curves� is in phase with fext �blue-dotted curves�, while for
	�1 �Figs. 3�c� and 3�d�� the flux f is in antiphase with fext.
The other curves �red-solid curves� correspond to �i, the
response of the SQUID to the applied flux. Away from the
resonance, the response is �in absolute value� less than �Fig.
3�a�, for 	=0.63� or nearly equal �Fig. 3�d�, for 	=8.98� to
the magnitude of fext. However, close to resonance, the re-
sponse �i is much larger than fext, leading to a much higher
flux f �Figs. 3�b� and 3�c� for 	=0.9 and 	=1.1, respec-
tively�. Moreover, in Fig. 3�c�, f is in antiphase with fext,
showing thus extreme diamagnetic �negative� response. The
numerically obtained amplitudes f0 �depicted as black circles
for 	=0.9 and blue diamonds for 	=1.1 in Fig. 2�b�� are in
fair agreement with the analytical expression, Eq. �6�. The
agreement becomes better for larger fe0.

We now consider a planar rf SQUID array consisting of
identical units �Fig. 1�a��, and forming a lattice of unit-cell
side d; the system is placed in a magnetic field Hext�H
perpendicular to SQUID plane. If the wavelength of H is
much larger than d, the array can be treated as an effectively
continuous and homogeneous medium. Then, the magnetic
induction B in the array plane is

B = �0�H + M� � �0�rH , �8�

where M =SI /d3 is the magnetization induced by the current
I circulating a SQUID loop and �r the relative permeability
of the array. Introducing M into Eq. �8� and using Eqs. �1�,
�2�, and �7�, we get

�r = 1 + F̃�± �f0�/fe0 − 1� , �9�

where F̃=�2��0a /L��a /d�3. The coefficient F̃ has to be very

small �F̃1�, so that magnetic interactions between indi-
vidual SQUIDs can be neglected in a first approximation.
Recall that the plus sign in front of �f0� / fe0 should be taken
for 	
1, while the minus sign should be taken for 	�1. In
Fig. 4 we plot �r both for 	
1 �Fig. 4�a�� and 	�1 �Fig.

4�b��, for three different values of F̃. In real arrays, that
coefficient could be engineered to attain the desired value. In
both Figs. 4�a� and 4�b�, the relative permeability �r oscil-
lates for low intensity fields �low fext�, while it tends to a

FIG. 2. �Color online� �a� Coefficient D vs the applied flux amplitude fe0,
for �=0.15 �red-solid curve�; �=0.10 �green-dashed curve�; �=0.05 �blue-
dotted curve�. �b� The amplitude of the flux f0 vs fe0, for 	=0.9 �red-solid
curve�, 	=1.1 �green-dashed curve�, and �=0.001, �=0.15. The black
circles and blue diamonds correspond to the numerically obtained f0 for
	=0.9 and 1.1, respectively.

FIG. 3. �Color online� Time dependence of the flux f �green-dashed curves�,
the applied flux fext �blue-dotted curves�, and the response �i �red-solid
curves�, for �=0.15, �=0.001, fe0=1.14, and �a� 	=0.63; �b� 	=0.9; �c�
	=1.1; �d� 	=9.0.
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constant at larger fext. In Fig. 4�a� �	
1�, the relative per-
meability �r is always positive, while it increases with in-

creasing F̃. In Fig. 3�b�, however, �r may assume both posi-

tive and negative values, depending on the value of F̃. With

appropriate choice of F̃, it becomes oscillatory around zero
�green-dashed curve in Fig. 4�b��, allowing tuning from posi-
tive to negative �r with a slight change of fext.

In conclusion, we have shown that a planar rf SQUID
array exhibits large magnetic response close to resonance,
which may be negative above the resonance frequency, lead-
ing to effectively negative �r. For low field intensities �low
fext�, �r exhibits oscillatory behavior which gradually dissap-
pears for higher fext. This behavior may be exploited to con-
struct a flux-controlled metamaterial �as opposed to voltage-
controlled metamaterial demonstrated in Ref. 16�. The
physical parameters required for the rf SQUIDs giving the
dimensionless parameters used above are not especially
formidable. A rf SQUID with L�105 pH, C�80 fF, and
Ic�3 �A, would give ��0.15 ��L�0.94�. For these pa-
rameters, a value of the resistance R�3.6 k	 is required
in order to have ��10−3, used in the numerical integration
of Eq. �2�. However, our results are qualitatively valid for
� even an order of magnitude larger, in which case
R�360 	. We note that �0=�p /	�L, where �p is the
plasma frequency of the JJ. For the parameters considered
above, where �L is slightly less than unity, the frequencies
�0 and �p are of the same order. However, �p does not seem
to have any special role in the microwave response of the rf

SQUID. Du et al. have studied the quantum version of a
SQUID array as a LH metamaterial, concluded that negative
refractive index with low loss may be obtained in the quan-
tum regime.17 Consequently, �r can be negative at some spe-
cific frequency range. However, their corresponding expres-
sion for �r is linear, i.e., it does not depend on the amplitude
of the applied flux, and thus it does not allow flux tuning.
Moreover, experiments with SQUID arrays in the quantum
regime, where individual SQUIDs can be described as two-
level systems, are much more difficult to realize.
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