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We introduce an architecture for a photonic crystal in the microwave regime based on supercon-
ducting transmission lines interrupted by Josephson junctions. A study of the scattering properties
of a single junction in the line shows that the junction behaves as a perfect mirror when the photon
frequency matches the Josephson plasma frequency. We generalize our calculations to periodic ar-
rangements of junctions, demonstrating that they can be used for tunable band engineering, forming
what we call a quantum circuit crystal. As a relevant application, we discuss the creation of station-
ary entanglement between two superconducting qubits interacting through a disordered media.

PACS numbers: 42.50.Dv, 03.65.Yz, 03.67.Lx,

Circuit QED [1] is quantum optics on a superconduct-
ing chip: a solid state analogue of cavity QED in which
superconducting resonators and qubits act as optical cav-
ities and artificial atoms. After successfully reproducing
many key experiments from the visible regime —qubit-
photon strong coupling and Rabi oscillations [2], Wigner
function reconstruction [3], cavity-mediated qubit-qubit
coupling [4], quantum algorithms [5] or Bell inequalities
measurement [6]—, and improving the quality factors of
qubits and cavities, c-QED establishes as an alternative
to standard quantum optical setups.

The next challenge in the field is the development of
quantum microwave photonics. The scope is the gener-
ation, control and measurement of propagating photons,
contemplating all its possibilities as carriers of quantum
information and mediators of long distance correlations.
The natural framework is that of active and passive quan-
tum metamaterials, with open transmission lines to sup-
port propagation of photons, and embedded circuits to
control them. Qubits could be a possible ingredient in
these metamaterials. A two-level system may act as a
saturable mirror for resonant photons [7], as it has been
demonstrated in a breakthrough experiment with flux
qubits [8], continued by further demonstrations of single
photon transistors [9], and electromagnetically induced
transparency [10]. These groundbreaking developments,
together with theoretical studies of band engineering [7]
and photodetection [11], provide solid foundations for
this rapidly growing field.

In this work, we advocate an alternative route for de-
veloping passive quantum metamaterials. We introduce
the idea of building structured transmission lines for the
intrinsic control of propagating photons, i.e. band engi-
neering. Our setup consists on microwave networks which
are interrupted by the simplest and most fundamental
device in superconducting technologies: the Josephson

junction (JJ). Ordered and disordered arrays of JJs will
act as elementary scatterers of photons, forming quantum
circuit crystals where the propagation of photons can
be controlled via band engineering. Finally we discuss
the interaction of these quantum crystals with supercon-
ducting qubits. As a very relevant application we will
demonstrate the potential of disordered quantum crys-
tals as mediators of entanglement, and their connections
with transport theory and nonlinear media.

Josephson junction as a scatterer.– JJs are the most
versatile nonlinear element in circuit QED. Either alone,
or in connection with extra capacitors or junctions, they
form all types of superconducting qubits to-day [12].
Moreover, in recent years they have also been used in-
side cavities to shape and control confined photons, dy-
namically tuning the mode structure [13], enhancing the
light-matter coupling [14, 15], or exploiting their nonlin-
earity in resonators [16]. In opposition to these closed
setups, we also find JJs in open arrays where a variety
of nonlinear phenomena and transport properties were
studied [17, 18], but without individual photon resolu-
tion. In the following we will combine both approaches,
providing a uniform theoretical framework to study the
interaction of one or more junctions with propagating
photons in an open line.

Our treatment is largely inspired by the studies of sin-
gle photon scattering by superconducting qubits [7, 8].
We expect that arbitrary linear or nonlinear resonators
(the JJs) may act as perfect scatterers of propagating
photons, where in this case the resonance is determined
by the JJ plasma frequency. Our setup is shown in Fig. 1,
where the JJ plays the role of a localized scatterer inter-
acting with incoming and outgoing wavepackets. The
Lagragian for this system combines the one-dimensional
field theory for a transmission line with the capacitively-

ar
X

iv
:1

11
0.

11
84

v1
  [

qu
an

t-
ph

] 
 6

 O
ct

 2
01

1



2

shunted-junction model for the junction [14, 16, 19]

L =
1

2
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−∞
dx

[
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]
(1)

+
1

2
CJ ˙δφ

2
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δφ

)
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∫ ∞
0+

dx

[
c0φ̇(x, t)2 − 1

l0
∂xφ(x, t)2

]
.

The field φ(x, t) represents flux on the line, whose ca-
pacitance and inductance per unit length, c0 and l0, we
assume to be uniform just for simplicity (See Ref. [19]
for generalizations). The junction, placed at x = 0, is
characterized by a capacitance CJ and a critical current
IC , and governs the dynamics of the flux difference δφ =
φ(0+)− φ(0−). Since we work in the few photon regime,
we may linearize cos(2πδφ/Φ0) ∼= 1− (2πδφ/Φ0)2 replac-
ing the JJ with an effective local oscillator characterized
by its Josephson plasma frequency, ωp =

√
2πIC/Φ0CJ .

All stationary solutions of the previous model are lin-
ear combinations of incoming, reflected (r) and transmit-
ted (t) plane waves, in the following form

φ(x, t) = Aφ

{
ei(kx−ωt) + re−i(kx+ωt) (x < 0)

tei(kx−ωt) (x > 0)
(2)

where Aφ is some arbitrary field amplitude and the waves
follow a linear dispersion relation, ω = vk. The reflection
and transmission coefficients are found by imposing that
the intensities Ileft = ∂xφ(0−, t)/l0, Ijunction = CJ δ̈φ +
IJ sin(2πδφ/Φ0) and Iright = ∂xφ(0+, t)/l0 be equal at
x = 0. For the explicit ansatz (2) this becomes

r =
1

1 + i2 Z0

ZJ

1
ω̄ (ω̄2 − 1)

, t = 1− r, (3)

with the rescaled photon frequency, ω̄ = ω/ωp, and the

impedances of the line and the junction, ZJ =
√
LJ/CJ

with LJ = Φ0/2πIC and Z0 =
√
l0/c0. This formula,

which is analogous to the one for a qubit [7, 8], exhibits
perfect reflection when the photon is on resonance with
the junction, ω = ωp, accompanied by the usual phase
jump across it (cf. Fig. 1).

Quantum circuit crystals.– This quantum metama-
terial consists of one or multiple microwave guides inter-
rupted by a periodic arrangement of JJs. We conceive it
as a generalization of photonic crystals to the quantum
microwave regime, with similar capabilities for control-
ling the propagation of photons: engineered dispersion
relations, gaps of forbidden frequencies, localized modes,
adjustable group velocities and index of refraction, and
control of the emission and absorption of embedded ar-
tificial atoms (i.e. improved cavities) [20].

The simplest possible instance of a quantum circuit
crystal consists of a unit cell with N junctions that re-
peats periodically. In such case, the eigensolutions are

FIG. 1. (a) An open transmission line interrupted by a
Josephson junction. (b) Reflection, r, transmission, t, and
phase of the transmitted beam, ϕ = arg t, vs. incoming pho-
ton frequency, in units of the plasma frequency ωp. We use
ZJ = 10.

translationally invariant and determined by the transfer
matrix of the unit cell, Tcell, relating the field at both
sides, φL,R(x) = aL,Re

ikx + bL,Re
−ikx, through(

aR
bR

)
= Tcell(ω)

(
aL
bL

)
. (4)

For a setup with junctions and free lines, the transfer
matrix has the form Tcell =

∏N
i=1 TiDi, where Ti is the

transfer matrix of the i-th junction and Di is the free
propagator through a distance di

Ti =

(
1/t∗i −r∗i /t∗i
−ri/ti 1/ti

)
, Di =

(
eiωdi/v 0

0 e−iωdi/v

)
.

(5)
The stationary states are given by det[Tcell(ω)− eip] = 0
or 2 cos(p) = Tr[T̂cell(ω)], where p is the quasimomentum
of the Bloch wave in this structure.

As an example, Fig. 2 shows the dispersion relation
ω(k) for the two simplest arrangements. The first one
is a line with identical Josephson frequency ωp and
impedance ZJ , evenly spaced a distance d (cf. Fig. 2a).
The second one is also periodic, but the unit cell con-
tains two junctions with different properties, (ωp, ZJ) and
(ω′p, Z

′
J), which are spread with two different spacings

(cf. Fig. 2c). The consequence is that, in addition to the
usual gap around the edge of the Brillouin zone, we find
one band gap around ω = ωp in the first setup, and two
band gaps around ω = ωp and ω = ω′p in the second,
more complex case.

Microwave photonic crystals have a variety of appli-
cations [20]. The first one is the suppression of spon-
taneous emission from qubits, which is achieved tuning
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FIG. 2. Photonic crystals with one (a) or two (c) junctions
per unit cell and their respective energy bands (b and d) vs.
quasimomentum p. We use ZJ = 10. In (d) ω′

p/ωp = 0.6
(blue) or 0.9 (gray) and and the distance inside the unit cell
is 0.01/d. Notice in (d) that in the lower band the gray and
blue line are indistinguishable.

their frequency to lay exactly in the middle of a band
gap. Another application is the dynamical control of
group velocities. While the width of the band gaps is
more directly related to the values of ZJ and the sep-
aration among scatterers, their position depends on the
scatterer frequency, ωp. Replacing the JJs with SQUIDS,
it becomes possible to dynamically tune those frequencies
and the slopes of the energy bands, changing from large
group velocities (large slope) to almost flat bands (cf.
Fig. 2d) where photons may be effectively frozen. Flat
bands may be used to create quantum memories, but also
to induce a tight-binding model on the photons, in the
spirit of coupled-cavity systems [21, 22]. A third appli-
cation is the engineering of dissipation where photonic
crystals provide a new arena for theoretical and experi-
mental studies. We will focus on this point, studying the
relation between disorder, localization and entanglement
generation in 1D quantum circuit crystals.

Entanglement through disorder.– It is feasible to pro-
duce regular circuit photonic crystals where, despite fab-
rication errors, the junctions within the same sample are
very similar. Nevertheless it can be interesting to in-
duce noise in the scattering elements, either statically,
intervening in the design or deposition processes, or dy-
namically, replacing the junctions with SQUIDs and dy-
namically tuning their frequencies. Noise may have a
dramatic influence in the transport properties of the pho-
tonic crystal [23]. On the one hand, the transmission co-

efficient averaged over an ensemble of random scatterers
〈T 〉 decays exponentially with increasing length L of the
disordered media, similar to Anderson’s localization [24].
On the other hand, noise fights against the interference
phenomena that gives rise to the existence of band gaps.
The consequence of this competition will be that a suffi-
ciently large noise could restore the transmission in the
frequency range that was originally forbidden [23, 25, 26].
In what follows we exploit this phenomenon in connection
to a purely quantum effect: the entanglement generation
through disordered media.

Our model setup consists on two well separated flux
qubits which are coupled by a quantum circuit random
crystal [Fig. 3]. The qubits will be at their degeneracy
points and one of them suffers an external resonant driv-
ing ωd = ε, Hq = ε

2 (σz1+σz2)+f(e−iωdtσ+
1 +H.c.). In addi-

tion to this, the qubit dynamics is influenced by the cou-
pling to a µwave line that has been interrupted by a set
of JJ forming a disordered crystal. We model the qubit-
line coupling through the spin boson Hamiltonian [7, 9],
while the line itself follows our previous scattering theory

with uniform noise δ in the frequency ωp → ω
(0)
p (1 + δ)

and impedance ZJ → Z
(0)
J (1 + δ). Tracing out the trans-

mission line one ends up with a master equation for the
two qubit reduced density matrix [27, 28]

∂%

∂t
= −i[H̃q +HLS, %]−

2∑
i,j=1

γij
(
[σ+
i , σ

−
j %] + H.c.

)
. (6)

Here, H̃q is the qubit Hamiltonian in the interaction
picture and HLS = J12(σ+

1 σ
−
2 + σ−1 σ

+
2 ). Notice how

the qubits are coupled coherently, through vacuum fluc-
tuations or Lamb shift, J12 = γ0Im(T exp(−ik2D))/2,
and also incoherently, through the cross-dissipation rate
γ12 = γ0Re(T exp(−ik2D)). These interactions com-
pete with the individual decay rates of the qubits, γii =
γ0(1 − Re(R exp(−ikD))) + λ, which includes a phe-
nomenological non-radiative decay channel, λ. In all
these formulas appear the effective rate γ0 = π~2g2/vk,
the total transmission and reflection through the line, T
and R, and the qubit-crystal separation, D, which in our
simulations disappears, as we will maximize over D.

The physical picture that results is intuitively appeal-
ing: for the qubits to be entangled, the noisy environment
should be able to transmit photons, T 6= 0, as both the
coherent and incoherent couplings depend on it. More-
over, all photons which are not transmitted but reflected
add up to the ordinary spontaneous emission rates of the
qubits, γii. And finally, for a wide parameter range the
two qubits are entangled also at t→∞, in the stationary
state of the combined system, ∂t%stationary = 0. We have
quantified the asymptotic amount of entanglement using
the concurrence, C, for a variety of noise intensities in a
medium which is composed of N = 20 junctions which
are uniformly spread over a distance L = 2λ. Fig. 3
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FIG. 3. (a) Two qubits connected by a noisy environment. (b)
Concurrence between the qubits for model (6) as a function
of frequency and fabrication error (δ). We simulated a setup
with 20 junctions regularly spaced over a distance L = 2λ,
averaging over 500 realizations. We use the parameters, ZJ =
10, ε = ωd, λ = 0.4γ0 and f = 0.1γ0.

shows the result of averaging 500 realizations of disor-
der and contains the two ingredients stated above. We
observe that for zero or little disorder entanglement be-
comes zero at the band gap, ω/ωp = 1, where photons are
forbidden due to interference. However, as we increase
disorder the gap vanishes and entanglement enters the
region around it. Outside the gap the effect is the op-
posite: disorder reduces the amount of entanglement, as
it hinders the transmission of photons. To understand
the modulations of the plot one must simply realize that
the value of C mostly depends on the ratio between γ12

and γii, and these are complex functions of T and R,
respectively [28, 29].

Summing up, in this work we have introduced the no-
tion of quantum circuit crystal, a superconducting circuit
formed by periodic arrangements of Josephson junctions
along a microwave transmission line. Closely related to
the JJ arrays, these metamaterials can be used to con-
trol the propagation of individual photons and their in-
teraction with stationary qubits. We combine both in a
setup with noisy quantum circuit crystals, where noise
and dissipation ally to generate stationary entanglement
among distant qubits. This type of entanglement is ro-
bust and will survive moderate amounts of dephasing and
other errors in the setup. As further applications we envi-
sion the extension of these ideas to two-dimensional and
fractal arrangements, with the aim of engineering actual
wavefronts and negative index of refractions, as well as
the engineering of photon-photon interactions and non-
linearities in these artificial media.
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SUPPLEMENTARY MATERIAL

Modelling qubit-line interaction

In this section we model the qubit-line interaction. Here, we consider flux qubits but other superconducting qubit
architectures are analogous.

For flux qubits the coupling is inductive and can be written in “circuit language” and/or “magnetic language” as,

Hint = MIqubit × Iline = µB , (7)

here M stands for the mutual inductance, Iqubit and Iline are the currents and µ is the magnetic qubit dipole, while
B is the magnetic field generated in the cavity. The current in the line is given by

Iline =
1

l0
∂xφ(x) (8)

and φ is the flux.
The normal mode quantization starts by expanding, φ(x, t) =

∫
dkuk(x)qk(t). We choose to have uk dimensionless.

Therefore the un satisfy the orthonormality condition,∫
dxc0uk ul = Crδkl , Cr :=

∫
dxc0 (9)

with un(x) the normal modes. Then the time dependent amplitudes are quantized,

qn =

√
~

2ωnCr
(a†n + an) (10)

giving the expression for the current:

Iline =
1

l0

∫
dk

√
~

2ωkCr
∂xuk(x)(a†k + ak) . (11)

On the other hand, the magnetic field-current relation is given by:

Bline =
µ0Iline

πd
(12)

with d the distance between plates in the coplanar wave-guide. Finally, the quantized magnetic dipole for the qubit
is,

µ = IpAσ
x (13)

with A the area loop. Putting alltogether we find that the interaction Hamiltonian (7) can be written as,

Hint = IpA×
µ0

πd
× 1

l0
× ~

2Cr
σx ⊗

∫
dk

1
√
ωk
∂xuk(x)(a†k + ak) . (14)

http://dx.doi.org/10.1103/PhysRevA.80.032109
http://dx.doi.org/10.1103/PhysRevA.80.032109
http://dx.doi.org/10.1103/PhysRevA.76.031805
http://dx.doi.org/10.1103/PhysRevA.76.031805
http://dx.doi.org/10.1103/PhysRevB.73.033106
http://dx.doi.org/10.1088/0143-0807/18/3/017
http://dx.doi.org/10.1103/PhysRevLett.58.2486
http://dx.doi.org/ 10.1103/PhysRevB.60.1555
http://dx.doi.org/ 10.1103/PhysRevB.60.1555
http://dx.doi.org/10.1103/PhysRevLett.106.020501
http://dx.doi.org/10.1103/PhysRevA.83.013825
http://dx.doi.org/10.1103/PhysRevA.83.013825
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We can introduce the coupling strenght per mode with frequency ω0 [1],

~g = IpA
µ0

π3/2d
ω0

√
1

~Z0
(15)

Grouping the constants and using the expression for g, Eq. (15), we rewrite (14),

Hint = ~
g

ω0
v3/2 π√

2L
σx

∫
dk

1
√
ωk
∂xuk(x)(a†k + ak) (16)

where v = 1/
√
l0c0 the light velocity in the line and ω0 the fundamental frequency of a cavity with a given g and L

is the Lenght. As expected the above is nothing but the spin boson model.

Quantum Master Equation for the qubits placed in the line

We discuss the master equation governing the dynamics of two independent flux qubits coupled to the line. Using
the results of the previous section we write (16) as,

Hint =
∑
j=1,2

σxj ⊗
∫

dkXk(xj) (17)

here xj stands for the points where the qubits are, and Xk(j) reads,

Xk(xj) = ~
g

ω0
v3/2 π√

2L

1
√
ωk
∂xuk(xj)(a

†
k + ak) (18)

The other terms in the Hamiltonian are the line and qubits ones,

Hline =

∫
dkωka

†
kak Hqubits =

ωqubit

2

∑
j=1,2

σzj . (19)

yielding the total Hamiltonian,

Htotal = Hqubits +Hline +Hint . (20)

Assuming temperature zero (typical experiments are at the mK while frequencies are GHz) the qubit dynamics, after
integrating the bosonic modes, is given by the standard master equation in Linblad form, [2],

∂tρ = − i
~

[Hqubit +HLS, ρ] +
∑
j,j′

Γj,j′

(
σ−j ρσ

+
j′ −

1

2
{σ+

j σ
−
j′ρ}

)
+ λ

∑
j,j′

(
σ−j ρσ

+
j −

1

2
{σ+

j σ
−
j ρ}

)
(21)

where {, } is the anticonmutator. In the equation we have splitted the decays contributions due to the qubit-line
coupling and to other noise sources affecting the qubits with a phenomenological strenght λ. The explicit expressions
for Γj,j′ are,

Γj,j′ = π2

(
g

ωqubit

)2
v3

L

∫
dk∂xuk(xj)∂xuk(xj′)δ(ωk − ωqubit) (22)

and HLS is the Lamb Shift:

HLS = ∆12

(
σ+

1 σ
−
2 + σ+

2 σ
−
1

)
(23)

with,

∆12 =
π

2

(
~g

ωqubit

)2
v3

L
P
[∫

dk
1

ωk

∂xuk(x1)∂xuk(x1)

ωqubit − ωk

]
(24)

where P[ ] means principal value integral.
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Master Equation and the Green Function in the line

It turns out useful to rewrite the above master equation, in terms of the Green Function for the line. The idea is
to relate the photonic transport properties with both the coherent coupling in HLS and the cross-dissipation rates
Γjk. We begin the discussion recalling the wave equation for the field in the line. Equivalently to layered photonic
crystals, it is sufficient to work the case of homogeneous line, since the problem we are dealing with is piecewise
homogeneous[3]. Being definite,

1

l0
∂2
xφ = c0φ̈ (25)

the idea is to find the eigenvalues of this Sturm-Lioville problem, by expanding in normal modes φ =
∑
n qn(t)un(x),

1

l0
∂2
xun = −ω2

kc0uk (26)

For flux qubits the coupling is via the current in line [cf. Eq. (8)]. Thus, it is convenient to discuss the expansion in
terms of their derivatives, rather that in terms of un. The equation is the same,

1

l0
∂2
x(∂xuk) = −ω2

nc0∂xuk (27)

but with the orthogonality condition, ∫
dx∂xuk∂xuk′ = Lk2δkk′ (28)

The Green function for this partial diferential equation reads,

∂2
xG(x, x′, ω) +

ω2

v2
G(x, x′, ω) = −δ(x− x′) (29)

It is pivotal the relation [cf. Eq. (8.114) in [3]]

ImG(x, x′, ω) =
v4

L

π

2

∑
k

∂xuk(x)∂xu
∗
k(x′)

ω3
k

δ(ω − ωk) (30)

Replacing the above (30) in the expressions for Γjj′ , Eq. (22) and ∆12, Eq. (24) we obtain:

Γjk(ωqubit) = 2π
(~g)2

v
ImG(rj , rk, ωqbuit) (31)

and,

∆jk =
(~g)2

v

1

ωqubit
P
[∫

dω
ω2ImG(rj , rk, ωqbuit)

ωqubit − ω

]
(32)

Green Function

In the following we find G(rj , rj′ , ω) for the problem discussed in the main text. We show that G(ri, rj , ω) is
written in terms of reflection and transmission coefficients, R and T respectively. As a consequence, we will rewrite
the expressions for the decays and cross couplings, Γij and ∆12, Eqs. (31) and (32) in terms of the latter, making
explicit the connection between the photonic transport in the line and the dynamics for the qubits coupled to it.

In our case, two qubits placed at possitions x1 and x2 with a set of junctions in between (see figure 4) G(rj , rj′ , ω)
can be computed as follows. T he equation for the Green function (29) is a field equation with a source (because
of the Dirac delta) at x = x′. The junctions cover the region from x = 0 to x = L, therefore x1 < 0 and x2 > L.
This situation is analogous to have a bounday with reflection R and transmission T , as despicted in figure 4). In this
situation the Green Function is given by [Eqs. (2.34) and (2.35) in [4]],

G(x, x′, ω) =


i

2k

(
e−ik(x−x′) −Re−ik(x+x′)

)
x < x′

i
2k

(
eik(x−x′) −Re−ik(x+x′)

)
x′ < x < 0

i
2kT eik(x−(x′+L)) x > L

(33)
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x = x/ x = Lx = 0
TR

FIG. 4. Sketch for the Green function calculation. The “black box” is characterized by transmission and reflection coefficientes.
The source (Dirac Delta) is represented by the ring attached to the line.

We remind that the minus sign in front of the R above comes because the Green function in (30) is given in terms of
∂xuk.

Finally, the coefficients in the master equation read [Cf. Eqs. (31) and (32)]

Γjj(ωqubit) = 2π (~g)2
v ImG(rj , rj , ωqbuit) = 2π (~g)2

v
1
2k

(
1 + Re(R)

)
(34)

Γ12(ωqubit) = 2π (~g)2
v ImG(r1, r2, ωqbuit) = 2π (~g)2

v
1
2kRe(T e−ik(x1−x2)) (35)

The last obstacle to write the master equation is to perform the integral in (32). Here we made use of the so called
Generalized Kramers-Kroning relation [5], namely

P
[∫ ∞

0

dω
ω2

v2

ImG(rj , rk, ω)

ω − ωqubit

]
=
π

2

ω2
qubit

v2
ReG(rj , rk, ω) (36)

Thus,

∆12 = π
(~g)2

v

1

2k
Im(T e−ik(x1−x2)) (37)

Introducing the definition,

γ0 = π
(~g)2

v

1

k
(38)

we end up with the expressions used in the main text.

Averaged Quantities

The quantities in disorder theory are averaged over different realization of the disorder. The averaged is defined as,

Ā =
1

Nrealizations

∑
realizations

Ai (39)

where Nrealizations is the number of realizations and Ai the result obtained in each of them.
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