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One-dimensional Josephson junction arrays: Lifting the Coulomb blockade by depinning
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Experiments with one-dimensional arrays of Josephson junctions in the regime of dominating charging
energy show that the Coulomb blockade is lifted at the threshold voltage, which is proportional to the
array’s length and depends strongly on the Josephson energy. We explain this behavior as depinning of the
Cooper-pair-charge-density by the applied voltage. We assume strong charge disorder and argue that physics
around the depinning point is governed by a disordered sine-Gordon-like model. This allows us to employ the
well-known theory of charge density wave depinning. Our model is in good agreement with the experimental
data.
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One-dimensional Josephson arrays show a diverse range
of transport regimes. In the regime of dominating Josephson
energy, which attracts a continued experimental interest [1–3],
they are highly conducting. In the regime of Josephson energy
smaller or comparable to the charging energy, one-dimensional
Josephson arrays show insulating (Coulomb blockade) be-
havior with activated transport [4]. Above a certain threshold
value of the bias voltage, finite current appears even at zero
temperature in the insulating regime. Initially, this switching
was interpreted in terms of the propagation onset of charge soli-
tons [5–7], i.e., the energy one has to pay in order to push one
soliton into the array. However, further experiments showed
that the threshold voltage is proportional to the array length and
depends strongly on the value of the Josephson energy [1,8].
Here we interpret the experimentally found behavior as
depinning in the presence of strong charge disorder [9].

We argue that the system is described by a model similar
to a disordered sine-Gordon model. The only difference is
the fact that, instead of the usual cosine potential, we have
another periodic function, the lowest Bloch band energy, which
depends strongly on the Josephson energy. It is this dependence
which gives rise to the dependence of the switching voltage
on the Josephson energy. Previously, similar models were
derived [1,6–8,10] using an additional phenomenological
inductance in each cell of the array, which provided the
necessary mass term. In Ref. [11] it is shown that a mass
term is generated in the adiabatic regime due to the Bloch
inductance [12] and the phenomenological inductance is not
needed. We argue that the adiabatic mechanism is sufficient to
describe the system prior to and at the depinning point.

For this work, a series of experiments has been performed
on a set of three Josephson junction chains. The three
arrays have been fabricated in parallel on the same silicon
substrate covered by an insulating thermally grown SiO2

layer. The individual cells of the array were implemented
as superconducting quantum interference device (SQUID)
loops, similarly to earlier experiments [1,7]. The two tunnel
junctions in each SQUID are equivalent to a single junction
with an effective Josephson energy EJ (�) tunable by the

magnetic flux � penetrating the loop area A. That gives
EJ (�) = Em

J | cos(π�/�0)|, where Em
J is twice the Josephson

energy of one bare Josephson junction of the SQUID and
�0 = h/2e is the magnetic flux quantum.

The set of samples contains nominally identical arrays (la-
beled A255, B255, and C255) each comprising 255 SQUIDs.
These arrays have very similar resistances. Nevertheless, slight
variations in the junction parameters are reflected in the I -V
characteristics [13].

The experiments were performed in a 3He/4He dilution
refrigerator at 20 mK temperature. A scanning electron
microscope (SEM) picture of a section of one of the arrays
is shown in the left inset of Fig. 1. All electrical connections to
the samples are carefully filtered by a combination of lumped-
element low-pass RC-filters and metal powder filters covering
a bandwidth of 10 kHz. I/V characteristics are measured by
ramping the applied bias voltage and recording the resulting
current with a homemade transimpedance amplifier. A typical
I/V characteristic is shown in Fig. 1, where the blue curve is
recorded while the bias voltage is ramped up and the red curve
represents the behavior for decreasing bias. In all cases, the
current vanishes bellow a certain threshold; for the horizontal
branch, no current can be detected within the resolution of our
current measurement which is of the order of 50 fA [13]. At
a value of Vsw(�), the chain switches to a conducting state;
the current after the switching is flux dependent and has a
magnitude of at least several pA. Retrapping to the I = 0
branch happens at a much lower voltage, Vrt < Vsw. In this
paper, we focus on the magnitude and the flux dependence of
the switching voltage Vsw(�). We expect Vsw to be primarily
a function of EJ (�). Thus, Vsw(�) is a periodic function
in � with a period of �0. Experimentally, we observe the
period (measured in units of the external magnetic field) to
be of the order of Bext = 6.9 mT, corresponding to an area
of �0/6.9 mT = 0.3 m2. This agrees well with the total area
per SQUID loop, ASQUID = 1.6 μm × 200 nm defined by the
sample layout.

The rate by which the bias voltage at the sample can
be changed is limited by the bandwidth of the connecting
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FIG. 1. (Color online) Hysteretic I -V characteristics of array
B255 measured for increasing voltages (blue) and decreasing voltages
(red) at � = 0. The left inset shows an SEM micrograph of the
Josephson junction array; the right inset is a schematic representation
of the array. The middle inset displays the probability density function
of Vsw.

leads (10 kHz). In some cases we recorded histograms for
the switching voltage. The method used to record switching
histograms is detailed in Appendix F. A typical example
is shown as the middle inset in Fig. 1. The distribution of
switching events turns out to be rather broad (e.g., ∼1 mV for
sample B255). However, this measurement confirmed that the
switching voltage as extracted from single I/V characteristics
is close to the mean of the histograms with a dispersion
reflecting the width of the distribution.

The system is modeled as an array of superconducting
islands (squares in the inset of Fig. 1) connected by Josephson
junctions (crosses in the inset of Fig. 1). The junctions are
characterized by the effective Josephson energy EJ (controlled
by the magnetic field) and by the effective capacitance
CJ ≈ 2C1 (C1 being the capacitance of each of the SQUID
junctions), which determines the (single electron) charging
energy scale EC = e2/2CJ .

Based on the area of the Al/AlOx /Al tunnel junctions
deduced from SEM micrographs we estimate that the average
capacitance of the junctions is CJ ≈ 1 fF. Due to variations
in the areas of the tunnel junctions the values of CJ are not
necessarily constant along the array.

Screening, dominated by two ground planes running along-
side of the array, is modeled by attributing to each island a
capacitance to the ground C0 (see inset of Fig. 1). This gives
the screening length � ≡ √

CJ /C0 and introduces yet another
charging energy scale, EC0 ≡ e2/2C0 = �2EC . We estimate
5 aF < C0 < 20 aF.

In our theory we include disorder in the gate (frustration)
charge 2efk on each superconducting island. The Hamiltonian
then reads H = HC + HJ , where

HC = (2e)2

2

∑
k,q

(nk − fk)[C−1]kq(nq − fq) (1)

and HJ = −∑
k EJ cos (θk − θk+1). Here ni is the num-

ber of Cooper pairs on island k, and [nk, exp(iθq)] = δk,q .
The capacitance matrix is given by Ckq = (2CJ + C0)δk,q −
CJ (δk−1,q + δk+1,q). In the regime CJ � C0, i.e., � � 1, one

obtains [C−1]kq ≈ C−1
J (�/2) exp[−|k − q|/�]. Arrays with

charge disorder in the limit CJ � C0 have been considered
long ago (see, e.g., Refs. [14,15]). The onset of charge transport
was calculated purely from the analysis of the stability of
charge configurations. The crucial difference in our work is the
strong renormalization of the disorder potential in the regime
EJ ∼ EC .

The model introduced above was considered (without
disorder) in Refs. [16,17] in the regime EJ � EC and also
in Ref. [18]. It was demonstrated that in the thermodynamic
limit the system undergoes a Beresinskii-Kosterlitz-Thouless
quantum phase transition and is an insulator for K < 2, where
K ≡ π

√
EJ /(8EC0) = π�−1√EJ /(8EC). Note that due to

� � 1 the regime K � 1 is compatible with EJ � EC .
As realized in Refs. [16,17], in the regime � � 1 it

is preferable to use the phase and change variables of the
junctions rather than those of the islands. Thus we introduce
the phase drops on the Josephson junctions φk ≡ θk − θk+1 and
their conjugate charge variables mk ≡ ∑k

p=1 np. We express
HC in terms of mk and after some algebra conclude that HC

can be obtained by minimizing

HC{Q} =
N∑

k=1

[
(2emk − Fk − Qk)2

2CJ

+ (Qk − Qk+1)2

2C0

]
(2)

with respect to continuous charge variables Qk . That is, HC =
minQ[HC{Q}]. Here Fk ≡ 2e

∑k
p=1 fp is the accumulated

random gate charge. The quasicharges Qk are well known
in the theory of Coulomb blockade and appear naturally in
the theories including a phenomenological inductance [6,10].
Their electrostatic meaning and the derivation with induc-
tances are explained in Appendix A.

The introduction of Qk is equivalent to a Hubbard-
Stratonovich transformation in the sense that, e.g., the real
time (Keldysh) partition function can be obtained as Z =
N

∫ ∏
k DQkDmkDφk ei

∫
dt[

∑
k mkφ̇k−HC {Q}−HJ ], where N is

a normalization factor. For a given path of the qua-
sicharges Qk(t) the (mk,φk)-dependent part of the Hamiltonian
HC{Q} + HJ separates into Hamiltonians of independent
Josephson junctions each biased by charge Qk + Fk , i.e.,

Hk = 1

2CJ

(2emk − Qk − Fk)2 − EJ cos φk. (3)

To obtain the effective quasicharge theory we integrate out the
discrete charge degrees of freedom mk and φk . At temperatures
much lower than the band gap of Eq. (3), i.e., the Q-dependent
energy splitting between the ground and the first excited
states of Eq. (3), and close enough to equilibrium, it should
be sufficient [10] to consider only adiabatic paths Qk(t) as
was done in Ref. [11]. These are paths that do not induce
Landau-Zener transitions between the energy bands of Eq. (3).
Generalizing the derivation of Ref. [11] to the regime of charge
disorder and defining QF

k ≡ Qk + Fk we obtain the following
effective Lagrangian

L =
∑

k

[
LB

(
QF

k

)
Q̇2

k

2
− (Qk − Qk+1)2

2C0
− U

[
QF

k

]]
. (4)

Here LB(Q) is the Bloch inductance [11,12], whereas U [Q]
is the zeroth Bloch band energy [Q-dependent ground state
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energy of Eq. (3)]. Thus, the mass term ∝LB is generated and
the phenomenological inductance used in Refs. [6,10] is not
necessary. In this paper, we are interested in depinning and
approach this transition from the nondynamical pinned side,
where fast changes in the quasicharge are naturally suppressed.
Thus, we argue that the description in terms of slow adiabatic
paths Qk(t) is applicable, at least for not very small values of
EJ . This assumption is checked for self-consistency below.

Our central idea here is that in the regime EJ ∼ EC and
� � 1 the model (4) is still applicable, whereas the pinning
potential is strong and varies significantly with varying EJ (�).
This explains the strong dependence of the switching voltage
on �. The idea of classical charge pinning in Josephson
arrays was first proposed by Gurarie and Tsvelik [10]. There,
the classical regime K � 1 was achieved by introducing a
phenomenological large inductance [6]. Our main achievement
here is in showing that Bloch inductance is sufficient to render
the pinning regime.

To describe the onset of transport (depinning) it is sufficient
to focus on the potential energy part of Eq. (4). In the
continuum limit justified by large �, we obtain the following
well-established continuum model for charge density wave
(CDW) depinning [9]:

HC =
∫

dx

[
[∂xQ(x)]2

2C0
+ U [Q(x) + F (x)] − E Q(x)

]
,

(5)

where the spatial coordinate x is measured in units of the
array lattice constant. Here E ≡ V/N is the homogeneous
depinning force (electric field). In Appendix C we discuss the
case of the bias voltage applied at the edge.

We assume a strong (maximal) charge disorder, i.e., the gate
charges 2efk being homogeneously distributed in an interval
of length 2e or larger. This is equivalent to a homogeneous
distribution of Fk between −e and e and the statistical
independence of Fk and Fq for k 	= q. Indeed, the disorder
charge Fk is effectively limited to the interval [−e,e] as any
deviation thereof is compensated by adjusting the number of
Cooper pairs on the islands.

As discussed in detail in the literature (for a review, see
Ref. [9]), the critical value of the depinning force is determined
by the competition between the disorder pinning potential and
the elastic energy. The two become comparable at the so-
called Larkin length NL (a.k.a. the Fukuyama-Lee length or the
Imry-Ma length) [19–21] and at Ep ≈ e(C0N

2
L)−1 the charge

is depinned [22].
The Larkin length is calculated [21] using the pinning

strength R of the effective potential U (Q):

R = maxQ∈[−e,e][U (Q)] − minQ∈[−e,e][U (Q)]. (6)

One obtains for the Larkin length [21]

NL ≈ 3−2/3�4/3R̃−1/3, (7)

where R̃[EJ (�)/EC] ≡ 1
16E2

C

R2. The dependence of R̃ on the

dimensionless parameter EJ (�)/EC is obtained numerically
(see Appendix D).

FIG. 2. (Color online) The switching voltage normalized to the
array length N as a function of the magnetic flux � for three arrays of
length 255. Solid lines are fitted functions; circles show experimental
data.

Thus, we obtain the following estimate for the switching
voltage:

Vsw = NEp ≈ 2NEC

e
3

4
3 �− 2

3 R̃2/3. (8)

This expression is valid as long as the Larkin length is much
shorter than the array length, NL � N .

We use Eq. (8) to fit the experimental data for arrays A255,
B255, and C255 (see Fig. 2). From the device fabrication one
can expect the value of the ground capacitance C0 to vary only
to a small degree between the samples. At the same time an
exact value for C0 can not be determined experimentally. The
other parameters of the array islands, CJ and Em

J , can vary
between different samples and also between different islands
of the same sample due to imperfections in the junctions. We
use the obtained fitting parameters to express the effective CJ

and Em
J in terms of the undetermined C0 and give the values

corresponding to either C0 = 5 aF or C0 = 20 aF (Table I). We
obtain values of CJ and Em

J that are comparable with the ones
expected from geometrical estimates. (Given the uncertainty of
the numerical coefficients in Eq. (8), some deviations should
be expected.) As the Larkin length NL depends on EJ , we
only provide the maximal value Nmax

L , achieved at � = 0,
where EJ = Em

J , and the minimal value Nmin
L , achieved at � =

�0/2, where EJ ≈ 0. The depinning approach is applicable
since NL < N .

When comparing to other previously explored models we
notice the difference between the physics we describe here
and the depinning of a single charge soliton in a disordered
array. The latter case was analyzed within the disordered sine-
Gordon model [25]. It was shown that the depinning critical
force grows with the soliton length �. In our case, however, the
depinning transition is a collective phenomenon in the whole
array. At the transition point the array contains, on average,
one extra charge of 2e per Larkin length, NL ∝ �4/3R̃−1/3. The
longer � is, the fewer charges are pinned and the easier the
depinning, Ep ∝ �− 2

3 R̃2/3, is. As mentioned above, models
of transport onset that rely on the creation of a propagating
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TABLE I. The experimental estimates and fitted values for
Josephson junction arrays A255, B255, and C255.

Array

A255 B255 C255

N 255 255 255

CJ �
2
3 = C

4
3
J C

− 1
3

0 2.5 ± 0.01 fF 4.27 ± 0.03 fF 2.3 ± 0.01 fF
Em

J /EC 1.27 ± 0.02 1.33 ± 0.02 1.63 ± 0.02
C

J (C0≈5 aF) 0.53 fF 0.79 fF 0.5 fF
� (C0≈5 aF) 10.3 12.6 10
Em

J (C0≈5 aF)
192 μeV 134 μeV 262 μeV

N
min/max

L (C0≈5 aF)
[27,42] [35,56] [26,46]

C
J (C0≈20 aF) 0.75 fF 1.12 fF 0.7 fF

� (C0≈20 aF) 6.1 7.5 6.0
Em

J (C0≈20 aF)
136 μeV 95 μeV 186 μeV

N
min/max

L (C0≈20 aF)
[13,21] [18,28] [13,23]

soliton [7] cannot explain the linear dependence of Vsw on N

observed in experiments.
We, finally, check the consistency of our adiabatic assump-

tion. Clearly, it is well justified if EJ � EC and it must
break down if EJ � EC . To get a more precise criterium, we
assume EJ ≈ EC and estimate the typical oscillation (pinning)
frequency of a domain of length NL with a rigid quasicharge Q.

We obtain ωp ∼
√

2EJ EC√
NL

(cf. Refs. [10,26–28]). We compare

this with the plasma frequency
√

8EJ EC , which in this regime
is also of the order of the critical Landau-Zener frequency.
We conclude that, parametrically, for NL → ∞, e.g., for
� → ∞, the adiabatic assumption is well justified. More
precise estimates show that, for our arrays, the adiabatic
assumption is valid except for a narrow domain of � around
�0/2 where EJ (�) � EC .

In this paper we have compared the experimentally mea-
sured magnetic flux dependence of the switching voltage of
an insulating (Coulomb blockaded) SQUID array with our
theoretical predictions based on a sine-Gordon-like model for
a continuous quasicharge field. Based on Ref. [11] we argue
that this model can be applied without introducing artificial
large inductances [1,6,7,10]. We employ the connection to
the theory of CDW depinning, first pointed out in Ref. [10],
to theoretically analyze the switching voltage and fit the
experimental data. We find that the breakdown of the insulating
state in Josephson junction arrays is a collective depinning
effect, similar to that of depinning of CDWs, vortices in type
II superconductors, etc. The switching behavior of Josephson
junction arrays can therefore be linked to a rich research area
of physics. We think this could be particularly interesting
as Josephson junction arrays are artificially fabricated and
could possibly help us to study depinning physics in the
limit of very short systems or at the crossover from discrete
systems to the continuum limit. Transport well above the
switching voltage remains the subject of continuing inves-
tigations [29]. It will be interesting to match this trans-
port regime with the depinning physics analyzed in this
paper.

We thank A.D. Mirlin, J.H. Cole, B. Kießig, D.G. Polyakov,
S.V. Syzranov, and T. Giamarchi for helpful discussions on
the subject. This work was partially supported by the Ministry
for Education and Science of the Russian Federation under
Contract No. 11.G34.31.0062. The theory analysis was funded
by the Russian Science Foundation under Grant No. 14-42-
00044.

APPENDIX A: ARRAY WITH INDUCTANCES

The introduction of inductances L0 into the model (see
Fig. 3) necessitates a description in terms of continuous as
well as discrete charge variables. The discrete ones are the
overall charges 2eni of the islands. The continuous ones are
the charges qi on the junction capacitances CJ and charges q

g

i

on the capacitances to the ground C0. Conservation of charge
requires

2e ni − fi − q
g

i + qi−1 − qi = 0, (A1)

where fi are the random offset charges. Introducing the
integrated charge variables mi ≡ ∑i

j=1 nj , Qi = 2e
∑i

j=1 q
g

j ,

and Fi = 2e
∑i

j=1 fj , one can easily obtain the following
Hamiltonian:

H =
N∑

i=1

[
1

2CJ

(2emi − Fi − Qi)
2 − EJ cos φi

+ 1

2C0
(Qi − Qi+1)2 + 1

2L0
�2

i

]
, (A2)

where �i is the flux on the inductance L0 of the ith island,
whereas φi is the phase drop on the ith Josephson junction.
The pairs of canonically conjugated variables in Eq. (A2) are
(Qi,�i) and (mi,φi). The physical meaning of Qi is clarified
by the following relation:

qi = Qi + Fi − 2emi, (A3)

FIG. 3. (Color online) Sketch of the Josephson junction array
with inductances L0. The magnified part shows the distribution of
the charges q

g

i , qi , 2ni , and fi on the island and the capacitances. In
the language of electrical circuits the background charge fi is given
by the constant charge on an additional capacitance that is connected
to the island, as shown in red in the magnified sketch of the island
above.
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which can be obtained using Eq. (A1). The charge on the
junction capacitance qi is given by the total charge that has
flown into the junction Qi + Fi minus the discrete charge
2emi that has tunneled through the junction. As Fi is a constant
offset charge, we understand that Qi is the integral of current
that has flown into the junction.

In Ref. [6] the inductance L0 is assumed to be large, so that
the dynamics of (Qi,�i) is adiabatic. In the current paper we
assume L0 → 0 and claim that the emerging Bloch inductance,
the large screening length �, and the pinning disorder render
an adiabatic regime in the vicinity of the depinning point.

APPENDIX B: RELATION TO LUTTINGER LIQUID

In the limit EJ � EC the Bloch inductance LB

approaches [11,12] the Josephson inductance LJ ≡
[�0/(2π )]2E−1

J , whereas U [Q] ≈ −ES cos [2πQ/(2e)]. Here
ES is the exponentially small phase slip amplitude [16,17].
Introducing qk = πQk/(2e) we obtain from Eq. (4) the
discretized Lagrangian of the Luttinger liquid [30] with phase
disorder in the backscattering term:

L = 1

2πK

∑
k

[
q̇2

k

v
− v(qk − qk+1)2

]

+
∑

k

ES cos[2qk + πFk/e]. (B1)

Here v ≡ 1/
√

LJ C0 and K ≡ π
√

EJ /(8EC0). Thus, for Fk =
0, i.e., without disorder, we reproduce the conclusions of
Refs. [16,17]. In the limit � → ∞ we obtain K → 0 and the
relevant physics in the thermodynamic limit is that of classical
pinning [30,31]. Yet, since in the limit EJ � EC the pinning
potential ∼ES is exponentially weak, systems of finite length
may conduct or even be superconducting [17].

APPENDIX C: VOLTAGE BIAS AT THE EDGE

We consider the potential energy part of the Hamiltonian
of the Josephson junction array:

HC =
∑

i

[
(Qi − Qi+1)2

2C0
+ U [Qi + Fi]

]
− Qi=1V. (C1)

Here the last term has been added to describe the voltage bias
V applied on the left edge of the array. To transform an edge
voltage bias to a homogeneous electric field we perform the
following transformations, Q̃i ≡ Qi − Ai and F̃i ≡ Fi + Ai ,
where Ai ≡ C0V (N + 1 − i)(N − i)/2N and N is the length
of the array. This gives

HC =
∑

i

[
(Q̃i − Q̃i+1)2

2C0
+ U [Q̃i + F̃i] − E Q̃i

]
, (C2)

where E ≡ V/N is the homogeneous depinning force (electric
field). In the case of maximal disorder the shift of the
quasicharge to include the voltages applied at the boundaries
does not change the distribution function of the random charge
F̃i . Thus we can omit the tildes and we obtain the model of
Eq. (5). This property of the maximally disordered model is
also referred to as statistic tilt symmetry [32].

FIG. 4. (Color online) The dimensionless strength of the pinning
potential R̃ as a function of EJ /EC in the main plot and as a function
of the magnetic flux � in the inset plot.

APPENDIX D: THE STRENGTH OF
THE PINNING POTENTIAL

The strength of the pinning potential R can be obtained by
numerically diagonalizing the single junction Hamiltonian

H (Q) = 4EC

[(
m̂ − Q

2e

)2

+ EJ

8EC

(|m + 1〉〈m| + H.c.)

]

(D1)

for a dense set of Q values in the interval [−e,e]. For
diagonalization we use 15 charge state |m〉 with the lowest
charging energy. Including more states does not change the
ground state energy EQ(Q) within our level of numerical
accuracy. The value of the function R̃ for each fixed value
of EJ /EC can be obtained by determining the amplitude of
the periodic function EQ(Q). The result is shown in Fig. 4.

APPENDIX E: SWITCHING VOLTAGE AS A FUNCTION
OF JOSEPHSON COUPLING ENERGY

One of the dominant effects visible in Fig. 2 is the
periodicity of the switching voltage Vsw with magnetic flux.
This periodicity is a consequence of the periodicity of the
Josephson coupling energy EJ ∝ cos(π�

�0
). The switching

voltage Vsw is plotted as a function of EJ in Fig. 5.

APPENDIX F: DISTRIBUTION OF
THE SWITCHING VOLTAGE

The switching voltage Vsw shows strong fluctuations.
The data presented in Fig. 2 are extracted from individual
measurements of I -V characteristics. The bias voltage was
ramped up once and the current response was detected by a
transimpedance amplifier. In these measurements, switching
can easily be identified as evident from the sample I -V curve
given in Fig. 1. The fluctuation in Vsw can be noticed from the
apparent noise visible in Fig. 2. For the sample B255 we have
recorded many switching events at various fixed values of �

and constructed histograms. The results of these measurements
are summarized in Fig. 6, where the properties of histograms
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FIG. 5. (Color online) The switching voltage as a function of EJ

for arrays A255 (magenta), B255 (red), and C255 (blue).

are visualized by red symbols and single switching events
extracted from individual I -V characteristics are shown as blue
dots. The latter data are the same as those displayed in Fig. 2.
Histograms are constructed from at least 10 000 switching
events. The events are sorted according to their switching
voltage Vsw and the range of Vsw is divided in about 250 to
300 bins. To construct histograms, the events corresponding to
each bin are counted. The mean Vmean of the histograms (this
is 50% of times the switching occurs at voltages lower than
Vmean) is represented as red dots in Fig. 6. The red squares
correspond to the voltage of the lowest bin containing at
least 0.15% of the events; the red diamonds correspond to the
highest bin containing at most 0.15% of the event. The vertical
distance between the squares and the diamonds represent thus
the full width of the histograms. Single events as seen in I -V
characteristics (blue dots) fall well into the span of switching
voltages recorded in a quite different manner for the purpose
of constructing the histograms.

The method to record a great number of events is rather
conventional. A sawtoothlike voltage signal with 0 < V <

Vmax has been applied as bias to sample B255, where Vmax

is considerably larger than the maximally observed switching
voltage. Each time the bias starts to ramp at V = 0 a timer is

FIG. 6. (Color online) Comparison of switching voltage ex-
tracted from single sweeps (blue dots) and full switching voltage
histograms (red symbols). The data displayed in red show the width
of the histograms (see text for an explanation).

started. The voltage output Vo of a transimpedance amplifier is
used as a trigger signal to stop the timer as soon as Vo exceeds
a threshold signaling that switching from a zero current to a
finite current state has occurred. Retrapping occurs when the
bias is set back to zero at the end of each voltage ramp. The
time span between the start and the stop trigger is a measure
of the switching voltage of a single event. The frequency of
the sawtooth signal is of the order of 20 Hz and the recording
of a histogram takes about 10 min.

The current needs to be detected with a relatively large
bandwidth. The resolution of the current measurement is for
this reason considerably worse than the resolution achieved in
measurements of individual I -V characteristics. In the latter
case the bias voltage can be varied very slowly while the
output of the transimpedance amplifier is averaged to yield
the desired current resolution. To construct a histogram many
events have to be measured and a histogram can be constructed
in a reasonable time only when the current after switching
is sufficiently large to be detected quickly. Since the current
after switching is getting smaller close to full frustration, � =
(n + 1/2)�0, histograms could only be measured in the range
of small frustrations depicted in Fig. 6.
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and D. B. Haviland, New J. Phys. 15, 095014 (2013).

[4] J. Zimmer, N. Vogt, A. Fiebig, S. V. Syzranov, A. Lukashenko,
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