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The joint action of the matching to a common RC-load and thermal noise on the spectral properties

of phase oscillators arrays is studied. It is demonstrated that proper matching may suppress the

chaotic dynamics of the system. The efficiency of radiation was found to be highest within a limited

frequency band, which corresponds to transformation of the shuttle soliton oscillating regime into

the linear wave resonance synchronization mode. In this frequency band the spectral linewidth

agrees well with a double of the linewidth for a shuttle fluxon oscillator, divided by a number of

the oscillators in the chain. If the oscillations demonstrate strong amplitude modulation, it leads to

increase of the linewidth roughly by a factor of five compared to this theoretical linewidth formula.

The dynamics of systems where the nonlinear active ele-

ments interact with each other through additional external

media can demonstrate surprising properties of collective

behavior. Such coupling is widely spread in nature and

technology and describes, for example, vibrations of a com-

mon base supporting oscillating mechanical systems [1, 2],

concentration of chemicals that diffuse in the surround-

ing medium and provide the coupling in biological popula-

tions [3–5], electromagnetic field interacting with the cold

atoms [6], common dynamic environment indirectly link-

ing the electronic circuits [7], etc. The regimes observed

in such systems are highly diverse, varying from differ-

ent types of oscillation quenching to a multitude of syn-

chronous regimes [1, 7, 8]. Namely, synchronous regimes

in the common base-coupled mechanical systems can dras-

tically enhance vibrations of the base leading to destruction

of the latter [9]. Moreover, the environmental coupling can

significantly change the dynamical characteristics leading

to birth of complicated chaotic and hyperchaotic regimes

of oscillations. Particularly, for the mechanical self-excited

nonlinear oscillators coupled through a common beam the

conditions for a wild attractor were obtained in Ref. [10],

while accounting for environmental noise can modify the

dynamics via new mechanisms of coherent generation de-

velopment [11]. Therefore, the investigation of the joint

effect of noise and a common load on the dynamics of com-

plex networks is of general importance for a wide spectrum

of tasks. In this Letter, we consider this problem in the

frame of the Frenkel-Kontorova model [12, 13]

ϕ̈j +αϕ̇j +sinϕj = idc+ if (t)+ ε(ϕj−1−2ϕj +ϕj+1), (1)

that has a broad variety of mechanical, chemical, biologi-

cal and physical applications including DNA-promoter dy-

namics [14], magnetic domain wall racetrack memory [15],

digital circuits [16] and ballistic detectors [17, 18] based on

Josephson junctions (JJs). In Eq. (1) ϕj is the phase of

the j-th oscillator, α and ϵ are the damping and the cou-

pling parameters, respectively. Each oscillator is biased by

an external force idc and subjected to fluctuations if (t),

which we assume to be white Gaussian noise with the di-

mensionless noise intensity γ: ⟨if (t)if (t + τ)⟩ = 2αγδ(τ).

We consider the chain with the RC-load [19, 20]: diR/dt =

−iR/rRcR + ϕ̈n(t)/rR, where iR(t) is the alternating cur-

rent through the right load, rR and cR - right load dimen-

sionless resistance and capacitance; the similar equation

can be written for the left load with rL and cL. Particu-

larly, for Josephson applications the considered system de-

scribes the dynamics in a parallel JJ array (JJA) shown in

Fig. 1, where crosses denote JJs with their internal capac-

itance, resistance and nonlinear inductance, ϵ = 1/l is the

inverse inductance between JJs and idc is the bias current.

c
R

r
R

r
L

c
L

Figure 1: An example of a parallel chain with RC-loads.

The increasing interest to the Josephson effect is associ-

ated with its THz applications. The weak radiation power

of a single junction had motivated a study of the processes

of synchronization of various JJ arrays [21–28], with the

aim to increase the radiation power; for example, in Ref.

[25] a high-efficiency serial-parallel 2-D array of JJs was

fabricated and studied. The remarkably high efficiency of



Figure 2: Current-voltage characteristics for the JJ array with

weakly coupled load rL = 30; dashed curve corresponds to

return-path IVC, steep solid curves are steps, corresponding

to direct-path IVCs. Insets demonstrate the voltage distribu-

tion vk = dϕj(t)/dt at a fixed point in time versus the junction

number, j, for the steps k = 1, 10, 13; the two phase portraits

for unmatched case cL = cR = 0 at: a) idc = 0.26, b) idc = 0.33.

radiation and a clear threshold of generation have been

discussed in a few papers, but have not been completely

understood yet. The authors of Ref. [25] have suggested

the internal cell resonance to be responsible for the oscil-

lating frequency. Ref.s [27, 28] have qualitatively shown

that a similar threshold effect of radiation is observed if a

chain of JJs is coupled to a high-Q cavity load. However,

in real applications [29] one desires a broader frequency

range for an oscillator that corresponds to a lower-Q. To

address this problem, an RC-load is usually placed at only

one end of the chain [25]; however, due to the distributed

nature of a JJ transmission line, this leads to a possibility

that not all JJs in the chain are coupled equally to the load

(unlike the cases of high-Q loads, as treated theoretically).

This illustrates the lack of detailed understanding of the

synchronism in real JJA.

We have performed an investigation of the spectral char-

acteristics of radiation from a JJA, the output power and

linewidth, at different steps of its current-voltage char-

acteristics (IVC). For experimentally relevant parameters

α = 0.03, ε = 4.41 and number of junctions n = 20 the sys-

tem (1) has been solved numerically. The dependence of

time averaged voltage v = dϕ(t)/dt on the injected current

idc is presented in Fig. 2 for zero noise intensity, a weakly

matched load at the left end (rL = 30, cL = 100) and an

unmatched load at the right end (rR = 100, cR = 100). The

Figure 3: Current-voltage characteristics for the matched JJ

array. Thin yellow and colored curves correspond to return and

direct-path IVCs for the matched RC load rL = 2, while other

curves are the same as in Fig. 2. Insets show phase portraits at

corresponding points of IVCs: a) idc = 0.41 and b) idc = 0.49

for rL = 2; c) rL = 2 and d) rL = rR = 1 for idc = 0.41.

load capacitance is sufficiently large, and allows for trans-

mission of power to the load resistance at all frequencies

of interest. For small currents idc → 0 the system remains

in the superconducting state. At large currents, idc > 0.6,

the behavior is ohmic, i.e. the voltage is proportional to

the characteristic resistance v = idc/α.

The first step of the IVC corresponds to the mode with

a single soliton moving along the chain [24]. At the second

and the third steps two and three moving solitons can be

distinguished. At 4-th and 5-th steps the behavior appears

chaotic; the reason of this may either be destructive inter-

ference of linear waves, or a combination of effects of re-

stricted length of the system (∼ 10λJ) and the discreteness

of the chain. Here, one can also observe the minor steps

at IVCs due to Cherenkov radiation of moving solitons

[18, 24, 31–33]. At the weakly biased higher-order steps

the voltage oscillations have the form of standing waves

(see the inset with v10(j) for 10-th step in Fig. 2) with

the amplitude significantly exceeding that of the first three

steps. It is worth noting that in the completely unmatched

case (cL = cR = 0), at the top of 12-th and higher-order

steps the Ruelle-Takens-Newhouse scenario [30] of transi-

tion from periodic to quasi-periodic oscillation (inset (a) in

Fig. 2) to chaos (inset (b) in Fig. 2) is observed, while the

chaotic behavior disappears even at weak matching at one

end, rL = 30, for which Fig. 2 is plotted.

If a matched load is placed at one end of the chain
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(rL = 2, cL = 100, while rR = 100, cR = 100), the IVCs for

higher steps (8th-16th, shown as thinner, colored curves in

Fig. 3) change drastically. As seen from Fig. 3, the role of

matching is crucial: all steps below 8-th disappear, which

means that few-soliton trains leave the chain, absorbed by

the load. Moreover, the higher-order steps become taller

(with respect to idc) and the dynamics at their tops changes

significantly: the amplitude modulation regimes shift to

larger values of bias current, the chaotic regimes do not

evolve (the oscillations become more regular in compari-

son with unmatched case). The phase portrait calculated

for zero noise intensity γ = 0 at 12th step for bias cur-

rents idc = 0.41 (inset a) in Fig. 3) demonstrates the limit

cycle corresponding to a purely periodical oscillations; the

regimes with amplitude modulation observed at 12th (for

idc = 0.49) and 13th (for idc = 0.41) steps are depicted in

Fig. 3 within the insets b) and c), respectively. The inset

d) in Fig. 3 illustrates the amplitude modulation vanishing

as a result of better load matching. In the presence of small

noise γ ≤ 0.1, the IVCs for steps are roughly the same as

in the zero-noise case (data not shown).

Figure 4: Variation of a) - the radiation power at the left load

Pk and b) - the radiation efficiency ηk vs bias current for k-th

step of IVC; solid curves for rL = 2, rR = 100, curves with

symbols for rL = 30, rR = 100.

The radiation power at the left load versus bias current,

shown in Fig. 4a for the weakly matched load and noise

intensity γ = 0.05, resembles the behaviour of experimen-

tal data [25]: the power at first six steps is weak, of the

order of the first step power, while for higher steps the in-

crease of the radiation power is observed (data for steps

1 and 10 are shown by symbols). For the matched RC-

load the oscillation power grows linearly with the increase

of bias current idc, which is a well-known dependence ob-

tained in experiments with flux-flow oscillators [29], and

varies twofold throughout steps 8 to 15, reaching its max-

imum at the 10th step. One can find the ratio η of the

ac power to the dc power, see Fig. 4b. It should be noted

that for the 10th step with a matched load we get nearly

the same efficiency as in experiment [25]. Such an increase

in power is accompanied by the transition from zero-field

steps to the resonant Fiske modes (see IVCs at Fig. 2, 3),

which is characterized by the change of distances between

steps from almost 3π/L at first steps to 2π/L around 10th

step and to π/L around 15th step. This effect can be ex-

plained by the constructive interference of linear waves in

a resonator formed by the whole chain and its load.

Figure 5: The radiation power Pk of oscillations vs voltage for

various matching of RC load and number of junctions.

The maximal generated power Pk transferred to the left

end at the k-th step of the IVC, is plotted versus the volt-

age in Fig. 5 for various matching of RC load. It reveals the

existence of a frequency band where radiation is more effi-

cient. While improving the matching at one end increases

the power significantly without shifting the optimal fre-

quency range, proper matching at both ends of the chain

leads to the shift of maximum power to higher frequencies.

In the latter case one should take into account that power is

extracted from both ends of the array, so the total power

is double of what is presented on the graph. The maxi-

mal generation efficiency reaches 15% for the load rL = 2,

rR = 100. Increasing the number of junctions in the chain

with fixed chain length to N = 30 shifts the optimal fre-

quency range by a factor of 1.5, increases the power, but

decreases the efficiency ηk. Increasing both the number

of junctions N = 40 and length L = 20λJ (i.e. keeping

the coupling ϵ the same) increases the power at the op-
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timal point, but decreases it for higher frequencies, thus

confirming the mechanism of powerful generation as inter-

ference of linear waves in a resonator formed by the array

and its load.

Figure 6: Spectral linewidth ∆fk vs bias current idc for k-th

step of IVC; solid curves denote theory (2).

The curves of spectral linewidth of radiation versus bias

current idc are shown in Fig. 6. It should be noted that the

linewidth at zero field steps is by about two or three or-

ders of magnitude smaller than the linewidth at flux-flow

steps [34, 35] at the same damping. This requires sim-

ulations with much better spectral resolution and there-

fore takes much more calculation time. The difference in

linewidth is presumably due to the smaller dissipation in

a zero field regime, which is reflected by the much smaller

differential resistance at zero field steps than at flux-flow

steps. Comparing the calculated linewidth with the ana-

lytical formulas for the single JJ [36] and the shuttle fluxon

oscillator [37], one can see that for the 10-th and 12-ve steps

the linewidth agrees well with the analytical formula [37],

multiplied by a factor of 2 and divided by the number of

junctions N :

∆f = αγr2d/N. (2)

The change of the numerical factor can be attributed to the

fact that we perform the comparison not with the single-

fluxon regime, but with a mixed traveling and standing

wave regimes. Comparison of calculated and theoretical

linewidth at the first step is, unfortunately, out of our

present computational capabilities due to sharp Cherenkov

steps at the IVC, which does not allow for accurate calcu-

lation of the differential resistance rd. From Fig. 6 one can

see that deviation of the calculated linewidth from the-

ory (2) increases at the top of the 10-th and 12-th steps.

This can be explained by amplitude modulation of oscilla-

tions at the tops of the steps (inset b in Fig. 3) that, in

the absence of phase fluctuations, does not lead to broad-

ening of the spectral linewidth, even if these modulations

are random [38]. The presence of noise, however, leads to

the diffusion of phase, which interplays with the amplitude

modulation, leading to the linewidth increase and deviation

from Eq. (2). Due to the strong amplitude modulation of

the signal (shown, for example, in the inset c) of Fig. 3),

the increase of the linewidth at higher steps is even larger:

for the 13th step the peak is shown by red circles in Fig. 7.

Decreasing the noise intensity γ leads to smoothing of this

peak, and the linewidth increases by a factor of 5 in com-

parison with the formula (2). Therefore, the occurrence

of a strongly pronounced peak with the increase in noise

intensity confirms the non-triviality of mutual influence of

fluctuations and the load on the system behavior. An im-

provement of matching (rL = rR = 1) makes the dynamics

more regular for the entire length of the step: only the limit

cycle (shown in the inset d) of Fig. 3) is observed here for

varying values of idc. Furthermore, with this matching the

linewidth is well described by (2), see the empty brown

rectangles and the corresponding solid curve in Fig. 7.

Figure 7: Spectral linewidth ∆f13 vs bias current idc for 13th

step of IVC for various values of γ and load resistance. Inset:

spectral linewidth versus bias current for 10th step of IVC for

various number of junctions in the chain; solid curves denote

theory (2), γ = 0.05, rL = 2, rR = 100.

The spectral linewidth for chains with various number

of junctions but the same chain length is presented in the

inset of Fig. 7 for the 10th step with proper load matching

rL = 2, rR = 100. Yet again, Eq. (2) gives reasonable

agreement with the computer simulation results, since reg-

ular generation and a limit cycle in the phase space of the

system is observed along the whole step.

In the present Letter we show that the threshold of ra-
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diation power and high efficiency of radiation can be ob-

served in a simple parallel (ladder-type) JJ array with an

RC load taken into account. We have demonstrated that

the most efficient radiation can be anticipated within the

frequency range that corresponds to transformation of the

shuttle soliton oscillating regime into the linear wave reso-

nance synchronization mode (i.e. from zero field steps into

the Fiske steps at the IV-curve of the RC-loaded JJA, re-

spectively). While we have considered the RC-load equally

matched for all frequencies, in reality good matching is usu-

ally achieved at high frequencies, so the observed threshold

of radiation power can be magnified. In case of a matched

RC load, the radiation power is expected to reach 15%

of the total dc power. Remarkably, for regular oscillation

regimes at the higher-order resonant steps, the linewidth

agrees well with the half of theoretical linewidth for a short

Josephson junction [36] and a double of the linewidth for

a shuttle fluxon oscillator [37], divided by a number of

the junctions in the chain. If the oscillations demonstrate

strong amplitude modulation, it leads to increase of the

linewidth by a factor of five in comparison with the theory.
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