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We consider a superconducting qubit coupled to the nonstationary transmission line cavity with 
modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the 
case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level 
system excitation which are due to the absorption of Casimir photons and due to the counterrotating 
wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical 
modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, 
counterrotating wave processes under such a modulation start to play an important role even in the 
resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to 
study experimentally different channels of a parametric qubit excitation.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Quantum electrodynamics (QED) of superconducting circuits is 
one of fast and intensively developing fields of a modern physics. 
The interest to superconducting circuits, which consist of Joseph-
son qubits and transmission line cavities [1], is heated by the 
possibility of implementation of quantum computation [2], obser-
vation of new phenomena of quantum optics in GHz frequency 
domain [3], as well as an engineering of sub-wavelength quan-
tum metamaterials [4]. An outstanding feature of superconduct-
ing circuits is that their parameters are tunable in situ: excitation 
frequencies of qubits can be varied externally, while both the fre-
quency of fundamental mode of a resonator and qubit-resonator 
coupling energy can be modulated in GHz range by means of aux-
iliary SQUIDs embedded in the circuit’s architecture or using more 
sophisticated methods. Particularly, superconducting quantum cir-
cuits can be used as a unique platform to investigate nonstationary 
cavity QED phenomena, such as the dynamical Casimir effect [5].
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In the series of papers [6,7] dealing with optical systems there 
was considered a behavior of a two-level atom in a nonstation-
ary high-Q cavity, which experiences a single nonadiabatic change 
of its frequency. One of the channels of a parametric atom excita-
tion in this situation is through a nonadiabatic change of its Lamb 
shift, which was termed the “dynamical Lamb effect” [7]. It is pro-
duced by counterrotating wave processes leading to a modulation 
of the atom’s dressing by virtual photons and can be considered 
as the new effect in the nonstationary cavity QED. There is an-
other mechanism of atom excitation in this system which is due 
to the absorption of photons generated by the cavity dynamical 
Casimir effect [7]. The absorption is governed by resonant (Jaynes–
Cummings) processes. This mechanism is, in general, dominant for 
the case of nonstationary cavity and therefore it “screens” the dy-
namical Lamb effect.

In our recent papers [8] (see also Ref. [9]), we suggested an idea 
how to make the dynamical Lamb effect dominant. It is attractive 
to use a superconducting system which consists of a stationary
resonator having a tunable coupling with the qubit. No Casimir 
photons are generated in this case, while the only one channel of 
qubit excitation is through the dynamical Lamb effect. Although a 
proposed idea allows for the observation of this effect, its unam-
biguous experimental realization may be not so easy.
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Fig. 1. (Color online.) Equivalent electric superconducting circuits of the systems 
under consideration. Both setups (a, b) consist of: 1) auxiliary SQUID, 2) single 
mode cavity, represented as LC -contour (red dashed), and 3) flux qubit (a) or trans-
mon (b). Crosses stand for Josephson junctions with the sizes being related to the 
values of Josephson energies. SQUID’s loop is subjected to the rapidly tunable mag-
netic flux �(t). The interaction between the electromagnetic field in the cavity and 
qubits can be organized via (a) inductive coupling in case of the flux qubit or (b) via 
capacitive coupling in case of the transmon.

Therefore, it is of interest to come back to a simpler scheme 
with variable resonator frequency, which is more straightforward 
to implement. In this article, we concentrate on the effect of a pe-
riodic modulation of the cavity mode frequency. We show that it 
provides a tool to distinguish between different channels of qubit 
excitation even near the resonance as well as to enhance the effect 
as a whole. We also take into account both energy dissipation and 
pure dephasing, which always exist in real systems and are able 
to suppress quantum effects. In contrast to most of other stud-
ies, we mainly focus on the analysis of different mechanisms of a 
parametric qubit excitation, i.e., due to rotating wave processes and 
counterrotating wave processes and under the variation of only the 
resonator frequency.

2. System

The effect under consideration can be implemented in tun-
able superconducting circuits, see, e.g., Ref. [10]. As it is shown in 
Fig. 1 (a, b), the basic components of possible setups involve sin-
gle mode cavity (superconducting coplanar waveguide), which has 
auxiliary SQUID embedded into one of its ends, and an artificial 
macroscopic atom, such as flux qubit (a) or transmon (b), cou-
pled inductively or capacitively to the cavity. Equivalent electric 
circuit of the resonator is associated with LC-contour inside the 
red dashed sector in Fig. 1. Alternating external flux �(t), thread-
ing the SQUID loop, provides an effective modulation of the res-
onator inductance at the desired frequency. As a consequence, such 
a modulation via SQUID plays a role of a non-stationary boundary 
conditions for the electromagnetic field in the cavity. Eventually, 
this results in modulation of the photon mode frequency.

3. Model

The full non-stationary Hamiltonian of the system under con-
sideration can be represented as

H(t) = H0(t) + HCas(t) + V . (1)

The Hamiltonian of non-interacting qubit and cavity is given by

H0(t) = h̄ω(t)a†a + 1

2
ε(1 + σ3), (2)

where a† and a are secondary quantized operators of photon 
creation and annihilation in the transmission line cavity of non-
stationary frequency ω(t). Pauli operators σ3 = 2σ+σ− − 1, σ+ , 
σ− act in the space of qubit excited and ground states. The non-
stationary term HCas(t) in (1) is responsible for the dynamical 
Casimir effect, i.e., the photon generation from vacuum [11–14]

HCas(t) = ih̄
∂tω(t)

4ω(t)
(a2 − a+2). (3)

The last term V in (1) describes a qubit-cavity interaction

V = g(a + a†)(σ− + σ+), (4)

where (a + a†) and (σ− + σ+) can be associated with the elec-
tric field and dipole moment, respectively, while g is the cou-
pling energy. This interaction term can be divided into two parts 
V = V 1 + V 2, where V 1 = g(aσ+ + a†σ−) yields the well known 
rotating wave approximation (RWA) or Jaynes–Cummings model, 
provided V 2 is dropped, while V 2 is given by V 2 = g(a†σ+ +aσ−). 
RWA terms conserve the total excitations number, whereas coun-
terrotating wave contributions produce and annihilate pairs of ex-
citations.

As it was shown in [7], in the case of a single instantaneous 
switching of cavity frequency ω from ω1 to ω2, the qubit excita-
tion probability at t → ∞ due to the Jaynes–Cummings processes 
(absorption of Casimir photons generated by HCas(t)) strongly de-
pends on ω2 as

w(C)
e � g2

(ε − ω2)2

(ω2 − ω1)
2

4ω1ω2
, (5)

when |ε − ω2| � g . It turns out that in the opposite case |ε −
ω2| � g the maximum value w(C)

e ∼ (ω2 − ω1)
2/ω2

2 is achieved in 
the resonance between ε and ω2 [7]. Note that this last value is 
independent on g and, in the case of a weak modulation is small.

The qubit excitation probability due to the counterrotating wave 
processes, i.e., the dynamical Lamb effect is not so strongly depen-
dent on ω2 [7]:

w(L)
e � g2 (ω2 − ω1)

2

(ω2 + ε)2(ω1 + ε)2
, (6)

which in principle allows for the separation of the two effects: 
w(L)

e becomes of the order of w(C)
e at large detuning |ε−ω2| ∼ ω2. 

But w(L)
e is small as ∼ (ω2 − ω1)

2 g2/ω4
2. At g/ω2 � 1, this quan-

tity is much smaller than the maximum value of w(C)
e attained 

near the resonance, where the excitation probability is controlled 
by Jaynes–Cummings processes. These circumstances make it prob-
lematic to probe the mechanism of qubit excitation linked to coun-
terrotating terms.

Now we consider a periodic modulation of resonator frequency

ω(t) = ω0 + d cos(�t). (7)

There appear several controlling parameters: the time-averaged 
detuning 	 = ε − ω0, modulation frequency �, and its amplitude 
d. We hereafter concentrate on the limits of a small-amplitude 
variations, d � ω0, and a weak qubit-cavity coupling, g � ω0. We 
then address system’s dynamics by solving numerically the Lind-
blad equation

∂tρ(t) − �[ρ(t)] = −i[H(t),ρ(t)], (8)

where ρ(t) is a density matrix of qubit and photon mode. Dis-
sipation in the cavity of the rate κ and qubit decoherence γ
are described through the matrix �[ρ] = κ(aρa† − {a†a, ρ}/2) +
γ (σ−ρσ+ − {σ+σ−, ρ}/2) + γϕ(σzρσz − ρ). In superconducting 
qubits the pure decoherence rate γϕ is typically of the same or-
der as relaxation γ . Both quantities are significantly larger than 
the relaxation rate of a cavity, γ � κ .
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Fig. 2. (Color online.) The evolution of the qubit excited state population (a) and the 
mean photon number (b) after the parametric modulation of a resonator frequency 
is turned on at d = 0.01ω0 < dcrit , g = 0.05ω0, γ = γϕ = 0.05ω0, κ = 0.01ω0, � =
2ω0, ε = ω0. Blue highly-oscillating lines correspond to the dynamics described by 
the full Hamiltonian, while green smooth lines provide similar quantities for the 
Hamiltonian with only resonant (Jaynes–Cummings) terms.

4. Results

If a parameter of modulation d is small enough, our calcula-
tions show that both the mean number of photons nph(t) and 
qubit excited state occupation we(t) tend to constant values as 
t → ∞. Such a situation is illustrated in Fig. 2, where we plot 
	we(t) = we(t) − we(0) and 	nph(t) = nph(t) −nph(0), while t = 0
corresponds to the beginning of a modulation; T R = π/g is the 
time scale associated with the Rabi frequency. Note that, for il-
lustration purposes, we hereafter take into account larger γ , κ , 
and γϕ than in the state-of-art systems in order to shorten the 
transition time to a final regime; this does not alter a qualita-
tive picture. A stabilization occurs due to the energy dissipation. At 
larger d, we see a change of the behavior, since no stabilization of 
nph is achieved and external pumping overcomes total dissipation. 
The same behavior takes place for a resonator with modulated 
frequency without a qubit but having nonzero cavity relaxation 
rate κ . In this case, it is not difficult to obtain explicitly the critical 
value of d as

d(res)
crit � 2ω0

�

√
κ2 + (� − 2ω0)2. (9)

This result can be derived from Lindblad equation by reducing it to 
a set of equations for the number of photons nph(t) = Tr[a+aρ(t)]
and the parameter responsible for fluctuations of a photon field 
a2(t) = Tr[a2ρ(t)] and then using the solution for zero frequency 
part 〈nph(t)〉t , well justified in the limit ω0, ω � d. Similar re-
sult has been obtained in Ref. [16]. When qubit is present in the 
Fig. 3. (Color online.) The dependence of qubit excited state population in a final 
regime as a function of modulation frequency at zero detuning 	 = 0 (a) and 	 =
−0.1ω0 (b) at g = 0.05ω0, γ = γϕ = 0.05ω0, κ = 0.01ω0, d = 0.01ω0. Blue upper 
(green lower) lines show maximum (minimum) values, between which oscillations 
occur.

system, the total critical value dcrit is enhanced because of the ad-
ditional dissipation in the qubit, but the estimate dcrit ∼ d(res)

crit is 
still valid at g � ω0 and γ not too large, as our numerical results 
show.

Now let us again focus on a coupled resonator-qubit system. It 
is reasonable to begin our considerations with the stationary limit 
d = 0 and in absence of dissipation. In this case, a qubit-resonator 
static system can be characterized by a set of “dressed” energy lev-
els. It is expected that when d is small but nonzero, these levels 
can strongly influence system dynamics provided � is approach-
ing at least some of them. We indeed see in our simulations that 
this is the case. For instance, if a detuning 	 is small, we(t) in 
the final (stabilized) regime at t → ∞ is mainly determined by the 
interplay between the dynamical Casimir effect and the Jaynes–
Cummings resonant processes. In the case of d = 0, the state |2, g〉
hybridizes with |1, e〉 mostly via RWA terms in the Hamiltonian 
thus forming two energy levels. Their splitting at zero detuning is 
determined solely by g , while the energy levels are positioned in 
the vicinity of 2ω0. Dynamical Casimir effect at nonzero d leads to 
a finite occupation of the state |2, g〉. When changing � near 2ω0
we see appearing two peaks in we(t → ∞), as shown in Fig. 3 (a). 
These two peaks nearly correspond to the Jaynes–Cummings en-
ergy levels with two excitations. Thus, the highest we(t → ∞) can 
be achieved when � is in a resonance with one of such energy 
levels. This feature can be used in experiments to maximize the 
effect. By tuning parameters in our numerical solution, we found 
that this maximum value scales as ∼ d2

ω2
0

ω0
�

, where � is an effec-

tive dissipation rate given by some combination of κ and γ . If 
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Fig. 4. (Color online.) The evolution of the qubit excited state population for dif-
ferent values of γ = γϕ at fixed κ = 0.01ω0 (a) and different values of κ at 
fixed γ = γϕ = 0.05ω0 (b). Blue lines 1 correspond to γ = γϕ = 0.01ω0 (a) and 
κ = 0.01ω0 (b); green lines 2 refer to γ = γϕ = 0.02ω0 (a) and κ = 0.02ω0 (b); red 
lines 3 stand for γ = γϕ = 0.1ω0 (a) and κ = 0.05ω0 (b). In all cases, g = 0.05ω0, 
� = 2ω0 + g

√
2, d = 0.01ω0.

we compare this result with the result for a single switching, we 
see that the periodic driving increases an effect by a large factor 
of ∼ ω0/�. Indeed ω2 − ω1 is analogous to d, since it also rep-
resents an amplitude of a resonator frequency modulation. Hence, 
the large factor ω0/� can be treated as a characteristic number of 
attempts to excite the qubit until the system is stabilized by dissi-
pation.

It is of interest that the widths of the two peaks as functions 
of � can be very different provided γ � κ , as usually applies 
for superconducting quantum circuits. If 	 < 0, the higher-energy 
level is mostly associated with photon degrees of freedom. How-
ever, the lower-energy state has a significant contribution from 
qubit degrees of freedom. The sub-leading contributions in both 
cases decrease, as 	 decreases. This implies that the width of the 
lower resonance should increase, while the width of the higher 
resonance should decrease. This is exactly the behavior we see in 
our solution. For illustration, corresponding peaks at larger |	| are 
plotted in Fig. 3 (b). Note that an effect of a pure dephasing is 
mainly in increasing the width of the lower-energy peak.

We now discuss in a more detail the influence of decoherence 
on system dynamics. Fig. 4 shows the time evolution of the qubit 
excited state population for different values of γ , γϕ , and κ at zero 
detuning 	 = 0 and modulation frequency � = 2ω0 + g

√
2, which 

corresponds to the maximum we(t → ∞), as explained before. It 
is clearly seen from this figure that all considered types of deco-
herence lead to the suppression of the maximum parametric qubit 
excitation. The same is true for the number of photons generated 
from vacuum. Notice, however, that if � is not in a resonance with 
the Jaynes–Cummings energy levels (for instance, at � = 2ω0), de-
coherence can increase we(t → ∞) due to the smearing of two 
peaks seen in Fig. 3.

Despite the fact that RWA physics plays an important role near 
the resonance between ε and ω0, counterrotating terms also lead 
to remarkable effects. They are responsible for fast and rather sig-
nificant in their amplitude oscillations of we as a function of time, 
although the whole dependence in general follows the trend de-
termined by Jaynes–Cummings processes, as seen from Figs. 2, 3, 
and 4. The amplitude of these oscillations is nearly proportional to 
both d and g . The oscillations appear also in the temporal depen-
dence of nph . This result is unexpected, since counterrotating terms 
of the Hamiltonian usually can be ignored near the resonance and 
in the case of a weak coupling, g � ω0. In contrast, in our nonsta-
tionary system, there exists an amplification of these terms due to 
the periodic parametric modulation of ω. We would like to stress 
that there is no effect of this kind in the case of a single switching, 
as Eqs. (5) and (6) evidence. We also note that the effect of coun-
terrotating wave terms was recently analyzed in Ref. [14] far from 
the resonance (“Anti-Jaynes–Cummings regime”) and in Ref. [15]
for the regime of a strong qubit-cavity coupling.

The oscillations we found can be studied in experiments and 
they may serve as a tool to distinguish between the rotating wave 
and counterrotating wave physics in the case of a parametric driv-
ing. However, it is not easy to resolve them in experiments using 
spectroscopic approaches because of GHz frequencies of these os-
cillations. Fortunately, there exist measurement techniques with 
time resolution up to 1 picosecond based on bifurcation oscillators 
or Josephson ballistic interferometers [17]. Such tools should al-
low to probe the dynamical Lamb effect in state-of-the-art or near 
future superconducting quantum circuits. Similar fast oscillations 
exist at large detunings, where total qubit excited state occupation 
we is much smaller than near the resonance, in accordance with 
the results for the single switching. We, therefore, arrive at the 
counter-intuitive result that the resonant regime is preferable for 
observation of both channels of qubit excitation in parametrically-
driven circuits with g/ω0 � 1.

Let us stress that regardless of the conclusion that the periodi-
cal modulation of a resonator frequency can dramatically increase 
we , it remains small in the regime of a weak modulation. Since 
we depends crucially on the “number of attempts” to excite the 
qubit, it is of importance to find a way to increase this number. 
Fortunately, in the case of a single resonator without a qubit if 
driving amplitude is large enough (d > d(res)

crit ), the number of gen-
erated photons cannot be saturated by the cavity dissipation, see 
Eq. (9). A qubit coupled to the resonator is unable to qualitatively 
change this behavior, although it provides an additional channel 
for the energy dissipation through γ , as discussed before. This im-
plies that, if d is large enough (d > dcrit), photon number does not 
saturate, so that the “number of attempts” somehow goes to in-
finity. Our numerical results for such a regime are presented in 
Fig. 5. We indeed find no saturation of nph in this case (b), while 
we grows up to a large value ≈ 1/2 (a). Such a dynamics of a 
qubit is expectable if it is subjected in a strong driving field. The 
role of this field is here played by Casimir photons. The whole de-
pendence we is again controlled by the Jaynes–Cummings terms 
with superimposed oscillations due to counterrotating wave pro-
cesses, see Fig. 5 (a). The amplitude of such oscillations is larger 
than in the case of a small d, but the relative contribution to we

becomes smaller.
Our findings have to be contrasted with the results for an-

other scheme we recently suggested [8], in which qubit-resonator 
coupling constant g is varying in time instead of the resonator
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Fig. 5. (Color online.) The qubit excited state population (a) and the mean photon 
number (b) as functions of time after the parametric modulation of a resonator 
frequency is turned on at d = 0.1ω0 > dcrit , g = 0.05ω0, γ = γϕ = 0.05ω0, κ =
0.01ω0, � = 2ω0, ε = ω0.

frequency. Within this scheme, it is possible to drive a system 
in a resonant regime which results in a very high we ∼ 1 solely 
due to counterrotating wave processes. Thus, the two schemes we 
consider suggest mutually complementary approaches to study dif-
ferent channels of a parametric qubit excitation in nonstationary 
coupled qubit-resonator systems.

Finally, we would like to mention that the investigation of 
nonadiabatic effects in superconducting quantum circuits is of in-
terest not only from the viewpoint of a fundamental physics, but 
also for purposes of quantum computation and simulation. Indeed, 
high-speed gates can induce nonstationary QED effects linked to 
the undesirable generation of excitations from vacuum, which are 
able to affect a device performance. Moreover, nonadiabatic effects 
can be used in a positive way. One of the examples is a realization 
of nonadiabatic holonomic quantum gates based on non-Abelian 
geometric phases [18]. Thus, the control of nonadiabatic phenom-
ena in superconducting quantum circuits is of significant impor-
tance.
5. Summary

We considered a dynamics of a single qubit coupled to a res-
onator with time-varying frequency taking into account both en-
ergy dissipation and pure dephasing. We have shown that by using 
a periodic modulation of a resonator frequency, one can strongly 
increase the probability of a parametric qubit excitation. Surpris-
ingly, although the qubit excited state population is mostly con-
trolled by resonant processes, counterrotating wave processes are 
of importance even at small detuning, since they produce con-
siderable oscillations of this quantity. Hence, both channels of a 
parametric qubit excitation, i.e., due to rotating wave and counter-
rotating wave terms can be probed near the resonance, when the 
effect of a qubit excitation is highest.
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