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Arrays of Josephson junctions have attracted attention in the 
past decades due to their remarkable versatility for modelling, 
in one [1] and two spatial dimensions [2], of ensembles of 
solid-state nonlinear oscillators. Statistical mechanics [3] and 
generation of electromagnetic radiation in the terahertz gap of 
the electromagnetic wave spectrum motivated the fundamental 
and applied physics community towards the investigation of 
array properties. Recently, the search for new computational 
concepts [4–6] tending to lower the power dissipation in dig-
ital circuits, has focused back the attention to 1D arrays of 
Josephson junctions. These computational ideas are heavily 
based on flux-quanta motion in 1D underdamped arrays under 
the condition in which the inductances connecting the junc-
tions are very low, a physical configuration that we identify 

as ‘strong coupling’ between the junctions of the arrays. 
Here, we undertake a systematic investigation of this kind of 
arrays in order to clarify their internal dynamics and provide 
input for the design and margins of the physical parameters 
of the devices operating in this regime. Our recent spectro-
scopic microwave study [7] of parallel arrays has revealed 
intriguing features concerning the dynamics of magnetic flux 
quanta in these structures. We herein investigate the modula-
tion of Josephson supercurrent and Fiske singularities induced 
by an external magnetic field in arrays of junctions of finite 
dimensions and compare the obtained results with theoretical  
predictions. As far as the supercurrent modulations are con-
cerned we show that a functional dependence [8] which 
extended results published by Miller et al [9] can provide 
good account of the experiments for the case of uniform 
arrays (junctions of the arrays having the same size, critical 
current and mutual spacing).
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Abstract
We investigate the magnetic response of transmission lines with embedded Josephson 
junctions and thus generating a 1D underdamped array. The measured multi-junction 
interference patterns are compared with the theoretical predictions for Josephson supercurrent 
modulations when an external magnetic field couples both to the inter-junction loops and 
to the junctions themselves. The results provide a striking example of the analogy between 
Josephson phase modulation and 1D optical diffraction grid. The Fiske resonances in the 

current-voltage characteristics with voltage spacing c

L0 2( )Φ , where L is the total physical 

length of the array, 0Φ  the magnetic flux quantum and c the speed of light in the transmission 
line, demonstrate that the discrete line supports stable dynamic patterns generated by the ac 
Josephson effect interacting with the cavity modes of the line.
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Figure 1 shows a sketch of the samples that we have used 
for the experiments. We study Josephson junctions connected 
in parallel by the small inductances generated by niobium 
superconducting electrodes; the technological procedure for 
obtaining the tunnel junctions is based on the Nb trilayer 
process (Nb/AlOx/Nb) for window-type junctions in which 
extra-isolation between electrodes is provided by the anodic 
oxide (Nb2O5) [10]. The thickness of the Nb films constituting 
a junction was 120 nm for the base electrode and 230 for top-
contact electrode. We shall comment later on the thickness 
of the oxide layer, which is of the order of few nanometers. 
Overall, the samples are transmission lines generated by the 
superconducting electrodes in which the Josephson junctions 
represent regions with increased local capacitance and are 
also commonly referred to as Josephson transmission lines 

(JTLs); d and D represent the magnetic penetration depths 
in the regions where junctions are present (d ) or not (D). 
Given IC0 (the maximum Josephson current in zero applied 
magnetic field), Rn (the normal-state tunnelling resistance), 
Rsg (the subgap resistance), the junctions that we used for the 
experiments had excellent properties with IC0Rn  ≈  1.6 mV 
and VN   =  IC0 Rsg up to 60 mV (with Rsg measured at 2 mV). 
From the magnetic field diffraction patterns of test junctions 
we calculated that the London penetration depth of our sam-
ples is 90 nm and therefore d  =  180 nm (neglecting the few 
nanometers of oxide thickness). We estimate the error on the 
London penetration depth to be below 5%.

In figure 1(b), we show the current-voltage (IV ) character-
istics of a three junction interferometer. The major geomet-
rical dimensions of our samples are indicated in figure 1(a).  
A model for the magnetic field dependence of the critical current 
of linear arrays composed of Josephson junctions (also called 
SQUIGs, namely Superconducting Quantum Interference 
Grids) was published by Miller et al [9]. For convenience, we 
report here their equation for the critical current pattern (note 
that typos were present in the version published in the journal, 
equation (2) of [9]. The correct equation should be
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In this equation  N is the number of loops of the array 
(by consequence, N  +  1 is the number of junctions), 
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15Φ = × −  Wb is the magnetic flux quantum and 

IC0  is the maximum critical current of a single junction of 
the array; φe is the flux of the magnetic induction vector (B) 
threading the loops between the junctions, which has the value 
BD(l  +  s) in terms of the notations introduced in figure 1. We 
note that, in the limit N  =  1, namely considering the case of 
a single interferometer with two (N  +  1  =  2) junctions, equa-
tion (1) becomes
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which is the well-known functional dependence for a two-
junction interferometer [11]. One can see that on the right 
hand side the dependence upon φj  =  Bdl (the flux threading 
the j-th junction) does not appear because equation  (1) was 
derived in the limit of ‘point-like’ junctions meaning that the 
contribution of the flux penetrating the junctions themselves 
is neglected. However, when the size of the junctions forming 
the arrays is different from zero (as it is for a point-like junc-
tion), equation (1) takes another functional dependence which 
reads [8]
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In terms of figure 1, φj is the magnetic flux penetrating the 
j-th junction having the magnetic field penetration depth d. 
In the limit φj tending to zero (no flux through the junctions) 

Figure 1. (a) Sketch of a three-junction interferometer indicating 
the magnetic fluxes threading the junctions and the loops 
connecting them. The locations of the tunnel junctions are indicated 
by the black-coloured regions. The direction of the applied external 
magnetic field, indicated by the arrow in the figure, is in the plane 
of the junctions. (b) A typical current-voltage characteristic of our 
samples, here for a three-junction interferometer.
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the second term on the right hand side gives unity and equa-
tion  (3) is reduced to equation  (1). For the purposes of the 
present paper, in which we have arrays made of junctions of 
the same size separated by equal distances and the dimen-
sions of the junctions not negligible with respect to those of 
the loops, we shall attempt to use equation (3) for interpreting 
the data. We have worked out, similarly to other groups [12], 
generalization of this equation which can be applied to non-
uniform arrays made of junctions with different supercur-
rents and uneven spacing, but these results shall be dealt in 
a future publication. It is worth noting that, when deriving 
equation (3), the normalized flux generated by the Josephson  
current through the inductor (l0) connecting the junctions, 
namely l I /0 C0 0Φ , is considered negligible and set to zero. In 
our case, this normalized parameter is in the range (0.01–0.15) 
and thus the approximation is reasonable. The theoretical 
model presented in [8], however, also reported on a pertur-
bation analysis calculating deviations from equation (3) due 
to a small, but non-zero Josephson current flux. We shall also 
analyze the predictions of this model in connection with our 
results. It is worth pointing out that equation (3) is analogous to 
the well-known dependence of the light intensity on a diffrac-
tion grating when the size of the slits is taken into account [13].

In figure 2(a), we show the modulation of the maximum 
Josephson supercurrent of a two junction interferometer which 
is made of (14 μm  ×  14 μm) square junctions separated by a 
2 μm gap. The curve through the data is obtained from equa-
tion (3) by normalizing the current to the maximum Josephson 
current of the interferometer (2IC0 in this case). One can see 
that the behaviour is much like the Fraunhofer pattern of a 
single junction. However, in the remainder of figure  2, we 
show a sequence of the effect on the interferometer modula-
tions due to the increased separation s between the junctions. 
In particular, in figure 2(b) the spacing between the junctions 
is 10 μm while in figure  2(c) it is 30 μm; the areas of the 
junctions are identical to those of figure 1(a). We can clearly 
see that increasing the spacing between the junctions (and 
therefore the flux threading the loops) the ‘interferometric’ 
character of the patterns becomes increasingly evident. All the 
curves through the data in figure 2 are obtained from equa-
tion  (3) using d and D as fitting parameters. The magnetic 
fluxes in this equation  are obtained just by multiplying the 
external magnetic field by the geometrical parameters shown 
in figure 1. The value of the magnetic penetration depth of the 
junctions corresponding to the best fit to the data of figure 2 
is d  = 180 nm. As far as D is concerned, the value that gave 
the best fit to the data was 300 nm which is consistent with our 
expectation from the fabrication procedure. Given the shape 
and the critical current density ( jc  =  110 A cm−2) of our sam-
ples and μ0  =  4π   × 10−7 H m−1 the ‘minimal’ Josephson 

penetration depth λ =
πµ
Φ

j
dj2 c

0

0

 our samples is 36 μm while 

we estimate that the effective Josephson penetration depth 

λjeff [14] of our samples lying in the range (35 μm–60 μm). 
In any case the size of our junctions is such that the junc-
tion themselves can be seen as ‘small’ junctions because their 
physical dimensions are smaller than the Josephson penetra-
tion depth.

Comparing our figure 2(c) with figure 5 of [8] we realize 
that our data show results consistent with the predictions  
of the perturbative approach. Notice, when comparing the 
vertical scales of the figures that the factor 2 is just due to a 
different choice of the maximum current value; in our case 1 
corresponds to the maximum current flowing through both the 
junctions, i. e. 2IC0. We see in particular in our figure 2(c) that 
the Josephson current does not modulate to zero: this effect 
must be attributed to the fact that we cannot neglect here the 
effect of the normalized Josephson flux which we estimate 
to be 0.15 in this case. For the above mentioned figure  of 
[8] we see that the perturbative correction due to a non-zero 

Figure 2. Magnetic field pattern for a two-junction interferometer 
with a given area (14 μm  ×  14 μm) of the junctions and increasing 
their separation distance. In (a), (b), and (c) the distance (between 
the sides of the junctions, s in terms of figure 1(a) is, respectively 
2 μm, 10 μm, and 30 μm. Increasing the distance between the 
junctions the ‘interferometric’ part due to the connecting loops 
increases its relevance over the single-junction Fraunhofer-
like contribution. The curves fitting the data are obtained from 
equation (3).
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Josephson flux generates a minimum in the modulations of the 
current in the same range observed in our experiments.

Figure 3 shows a sequence similar to the one reported in 
figure 2, but here for a three-junction arrays. The size of the 
junctions is as in figure 2 and the separation between the junc-
tions is 5 μm, 10 μm, and 20 μm, respectively, for (a), (b), and 
(c). While increasing the separation between the junctions the 
interference effect between them increases as well. A double-
period modulation indicates critical current amplitude oscil-
lations that take place over different magnetic field periods. 
The curves through the data are obtained from equation (3). 
We can conclude that equation (3) provides excellent account 
for the experimental results. One can see in figure  3(c), as 
for figure 2(c), that when the distance between the junctions 

increases the experimental critical current modulation does 
not attain values close to zero, as in the other cases, while 
the theoretical curve does go to zero. As before, this effect is 
a consequence of the fact that the flux due to the Josephson 
currents cannot be neglected, meaning that equation (3) fails 
explaining the data and a more complex model and/or numer-
ical simulations should be considered [8]. For figure  3(c) 
we estimate a normalized Josephson flux of the order of 0.1 
which can also be considered reasonably consistent with the 
predictable non-zero modulations.

In figure  4, one can see how, for an array of four junc-
tions, the modulation with different periods changes. One 
can see that, next to the main maximum at zero field, there 
are two small secondary maxima with two shorter modula-
tion periods. The curve through the data shows again the fit to 
equation (3). For figure 4(a), the distance between the junc-
tions is 5 μm, while for figure 4(b) is 10 μm. We can conclude 
that equation (3) provides a good explanation for grid-arrays 
for both odd and even number of junctions. The fact that in 
some cases we present only the positive field axis of the pat-
terns is because we collected a large amount of data from 
measurements on several samples and, in order to maximize 
the collected information, we often just checked the symmetry 
of maxima and minima of the patterns for positive and nega-
tive values of the magnetic field, but measured the current 
modulations only for one direction of the field.

We turn now to the analysis of the dynamical features of 
our system. The external magnetic field applied to the arrays 
in the plane of the junctions generates Fiske steps (FS) in 

Figure 3. The data analogous to that shown in figure 2, but for a 
three-junction interferometer. The areas of the junctions are  
14 μm  ×  14 μm), as in figure 2, while the distances are, 5 μm, 
10 μm, and 20 μm, respectively, for (a), (b), and (c). Here, as in 
figure 2, the fit is to equation (3). Note that in (c) the data points do 
not reach zero due to the increased contribution of the flux through 
the loops of the Josephson currents, which are neglected when 
deriving equation (3).

Figure 4. The modulation of the Josephson critical current of an 
array made of four junctions in parallel. The areas of the junctions 
are the same as in figures 2 and 3 while distances are 5 μm and  
10 μm, respectively, for (a) and (b).

J. Phys. D: Appl. Phys. 49 (2016) 065303
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the current-voltage characteristic, see an example is given in 
figure  5(a) for an array of four junctions of total length of  
L  = 66 μm. These steps were observed at voltages 

Vn
nc

LFS 0 2( )= Φ , where c c0.028   =  is the speed of light in the 

transmission line containing the junctions (c is the speed of 
light in vacuum) and n an integer. Bearing in mind that the 
capacitance per unit length of our transmission lines is mainly 
determined by the contribution of the junctions, from this 
value of the speed of light in the transmission line, assuming 
the relative permittivity of Al2O3 values in the interval (30–70) 

fF μm−2, we have estimated that the thickness of our dielec-
tric barrier is in the range (1–2) nm.

The existence of the Fiske steps reflects dynamical features 
of our samples. The voltage of the 1st Fiske step (and the voltage 

spacing between following steps) is c

L0 2( )Φ . In order to check 

the validity of the model we have plotted (see figure 5(b)) the 
voltage of the 1st Fiske step of all the arrays that we have 

tested as a function of the ratio 
L

1

2( ). One can see that the 

dependence is very close to linear and the straight line fitting 

the data has a slope (1.67  ±  0.08)   ×   10−8 V m, which is con-
sistent with the expected c 1.73 100

–8     Φ = ×   =1.73  ×  10−8 
V m value. Thus, the positions of the steps, given the spe-
cific light propagation velocity in the discrete line, can be 
calculated just as done for a continuous junction of the same 
physical length. This is particularly surprising if we think that 
the junctions are spaced here by distance up to 30 μm, which 
is less than the Josephson penetration depth λj of the array, 
but still represents a relatively wide extension for a disconti-
nuity. In figure 5(c), we show a spectrum of emitted Josephson 
radiation measured at 7.91 GHz when biasing at about 16 μV 
on the first Fiske step of a 600 μm long array made of 50 junc-
tions having an area of (9 μm  ×  9 μm) and spaced 2 μm. The 
radiation could be detected here due to the availability of a 
receiver in the (6–18) GHz range [7].

We have also measured the modulation of the current ampli-
tudes of the Fiske steps and examples are shown in figure 6.  
In this figure, we report the measurements of a 34 μm long 
three-junction interferometer made of junctions having an 
area of (9 μm  ×  9 μm) and spaced 2 μm. Figure 6(a) shows 
the modulation of the maximum Josephson current of this 
sample fitted to equation  (3). Figures 6(b) and (c) show the 
maximum current modulations of the first (b) and second (c) 
Fiske steps of this sample, respectively. The 1st and 2nd Fiske 
steps appeared in this case at voltages of 235 μV and 470 μV, 
which correspond to the Josephson radiation at 114 and 227 
GHz. The normalized length of this sample L /λj in this case 
was of the order of unity, however, we speculate that in this 
case it might be more relevant for the dynamics the ratio L /λjeff 
which is more safely below unity and determines the fact that 
we did not observe zero-field steps [1, 11] in this case. We 
found that increasing the normalized length of the arrays, the 
Fiske resonances display more complex modulation patterns.

For the case of two intermediate-length junctions con-
nected by a superconductive loop at the boundary, modula-
tions of Fiske steps currents due to the flux through a coupling 
inductor were reported [15] for a normalized Josephson flux 
through the coupling inductance of the order of unity, how-
ever, the physical configuration was substantially different 
than that of the present experiment. Here we have Fiske 
modes generated by oscillations all over a discrete Josephson 
transmission line while in [14] the Fiske steps were those gen-
erated by internal spatial oscillations in the individual junc-
tions which were coupled at one end. Over all, Fiske steps in 
spatially extended Josephson structures have shown a robust 
identity even when the junctions were investigated in bias 
configurations including the interactions with external em 

Figure 5. (a) The current-voltage characteristics of a four-junction 
interferometer showing Fiske steps; (b) The dependence of the 
voltage of the 1st Fiske step upon the inverse of the physical length 
of the arrays showing that the resonances take place over the whole 
length of the array. The straight through the data represents a linear 
fit; (c) the radiation emitted when biased at about 16 μV on the 
Fiske step of a 600 μm long junction.

J. Phys. D: Appl. Phys. 49 (2016) 065303
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radiation [16]. A theoretical model (sided by numerical simu-
lations) which could explain the current modulations of Fiske 
steps in the Josephson structure herein investigated could be 
an extension of the work performed by Paternò et al [17] for 
low-inductance two-junction interferometers.

As far as 1D arrays of junctions are concerned results for 
modulations of Josephson currents and evidences of reso-
nances (typically for grids made of 10 junctions or more) 
were reported [18, 19] but in the literature we haven’t found 
a systematic investigation of stability, radiation emission, and 
current modulations of the Fiske steps. In the cases of [18] 
and [19] the normalized Josephson current flux through the 
connecting inductors (l I /0 C0 0Φ ) was in the range (0.016–0.2), 
however the physical structure of the arrays was substantially 
different from ours.

The information that we extract from figures 5 and 6 is that, 
in spite of the discreteness of the transmission line embed-
ding the Josephson junctions, very stable spatial oscillations 
of the phase occur over the whole length of the transmission 
line. This can be either an interesting advantage (or a problem) 
to consider, depending on possible applied aspect counter-
part, however, a similar physical result had been also found 
by other authors in a similar context in which the analysis of 

a Josephson lines with discontinuities was performed [20].  
An advantage is represented, for example, by the fact that cou-
pling an external magnetic field to the discrete JTL is eased by 
the larger areas of the superconducting loops connecting the 
junctions. A disadvantage, as far as oscillations are concerned, 
can be the fact that complex and/or unknown internal modes 
develop inside the discrete structure due to the underdamped 
nature of the junctions. It is worth noting that applications 
for new computational concepts [4–6] generally require, for 
space compactness of the devices, junctions of smaller areas 
(few micron squares) meaning that critical current densities 
substantially higher than ours (at least one order of magni-
tude) are chosen in order to have values of Josephson currents 
reasonable for practical devices. We believe that these two 
conditions could lead to characteristics of the devices which 
are not far from what we measured on our samples. In any 
case, scaling down the dimension of the arrays shall be an 
interesting project to pursue.

In conclusion, we have reported experimental results on 
static and dynamic interference patterns in underdamped 
arrays of Josephson junctions. We have shown that the experi-
mental results are consistent with the theoretical model, which 
is linking together, for the physical case of interest, the modu-
lation of the supercurrent of the arrays (due to the supercon-
ductive loops connecting the junctions) and the modulation 
due to the flux threading the junctions. The equation provided 
by the theoretical model for the maximum Josephson current 
modulation of a 1D array is analogous to the law predicting 
the modulations of the intensity of a 1D grid. Therefore, our 
work demonstrates once more the versatility of Josephson 
effect and superconducting wave functions to model wave 
phenomena observed under other physical circumstances.  
In spite of the fact that the junctions of the array represent  
relevant discontinuities in the capacitance of the JTL, the pres-
ence of stable Fiske modes (and their current modulations) 
in the current-voltage characteristics demonstrates that stable 
and coherent phase oscillations take place over the whole 
length of the array. Considering that stable Fiske modes were 
observed for voltages all over the wide range (0.1–0.7) mV, 
we speculate that an adequate integrated planar wave guides 
design for our samples could lead to highly monochromatic 
sources (notice the low dynamical resistance of the steps of 
figure  5(a) and the narrow emission peak in figure  5(c)) of 
electromagnetic radiation in the (sub-)terahertz range that to 
be coupled to various other devices or loads.
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