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Abstract

We investigate wave transport properties of parity—time (PT) symmetric lattices that are periodically
modulated along the direction of propagation. We demonstrate that in the regime of unbroken PT-
symmetry, the system Floquet—Bloch modes may interfere constructively leading to either controlled
oscillations or power absorption and unlimited amplification occurring exactly at the phase-transition
point. The differential power response is affected by the overlap of the gain and loss system
distribution with wave intensity pattern that is formed through Rabi oscillations engaging the coupled
Floquet-Bloch modes.

1. Introduction

A special class of non-Hermitian Hamiltonians that are invariant under simultaneous parity and time reversal
and possess a purely real eigenvalue spectrum was initially investigated in the context of quantum mechanics [1].
The PT-symmetry condition requires the real part of the complex potential in the Schrédinger equation to be
symmetric, and its imaginary part representing the gain—loss distribution to be antisymmetric. These systems
undergo a PT-symmetry breaking transition at some critical peak value of the imaginary part of the potential.
Above this threshold value, the spectrum ceases to be real, implying instability for the quantum system. The idea
of PT-symmetry has been applied to many areas such as cavity quantum electrodynamics [2], classical
mechanics [3], and magnetohydrodynamics [4, 5] yet perhaps the most intriguing features of PT-symmetry are
being investigated in the context of optics [6—17]. Optical systems with a PT-invariant complex refractive index
supporting stable propagation of waves were predicted theoretically [6, 7] and demonstrated experimentally
[8,9]. The features of the linear regime include double refraction, power oscillations, nonreciprocal diffraction
[6-9], amplification of the Goos—Héanchen effect [10], and unidirectional invisibility [ 1 1-13]. On the other
hand, implementation of unidirectional dynamics [14, 15], nonreciprocal soliton scattering [ 16], and switching
[17] require combined action of PT-symmetry and nonlinearity. Experimental studies of active PT-symmetric
electric circuits [18] and theoretical investigations of PT-symmetric nonlinear magnetic metamaterials [19] were
also reported recently.

Longitudinally modulated PT-symmetric structures, which have been attracting increasing attention,
exhibit even richer behavior and potential for a broad range of applications. Recent investigations in this
direction include theoretical studies of wave dynamics in complex crystals with PT-symmetry subjected to a
sinusoidal ac force [20] that predicted dynamic localization of a wave packet due to the band collapse in the
regime of unbroken PT-symmetry and nonreciprocal Bragg scattering in the vicinity of the breaking point. In
[21], the authors introduce the concept of local PT-symmetric invariance exemplified by two coupled
waveguides whose longitudinally modulated gain—loss profile remains antisymmetric at any propagation
distance. Depending on the initial conditions, such systems can support symmetric or antisymmetric power
evolution and unidirectional phase exchange between waveguides. The phase-transition in PT-symmetric
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tight-binding lattices with periodic longitudinal modulations of the gain—loss distribution was shown to depend
on the ratio between frequency and amplitude of the modulations [22]. In the unbroken PT regime, these
systems exhibited hyperballistic transport properties, while in the vicinity of phase-transition, they supported
diffraction-free propagation. A stochastic PT-symmetric coupler with fluctuating parameters, such that the
gains and the losses are exactly balanced on average, was investigated in [23]. It was shown that even in the
regime of unbroken PT symmetry, the statistically averaged intensity of the wave in such systems grows.
Nonlinear properties of longitudinally modulated PT-symmetric systems (dual-core nonlinear waveguides)
include stabilization of the solitons by application of management, specifically periodic simultaneous switching
of the sign of the gain, loss, and inter-core coupling [24]. Recently it was also shown that several classes of
longitudinally modulated non-PT-symmetric waveguides can possess an all-real spectrum [25, 26].

Among other effects, optical Rabi oscillations, i.e., resonant power transitions between different light modes
originally proposed [27, 28] and observed [29] in Hermitian waveguides and wave-guide arrays, were also
predicted and periodically modulated in the direction of propagation PT-symmetric waveguides [30]. In the
present work, we focus directly on these phenomena, specifically on propagation dynamics in complex PT-
symmetric wave-guide arrays periodically modulated along the direction of propagation. We show that in the
regime of unbroken PT-symmetry when all Floquet-Bloch (FB) modes remain stable, mode interference results
in a wealth of behaviors including damping, amplification, or even unlimited amplification of incident beam
power distributed linearly or quadratically in the propagation direction. The different power regimes depend on
the resonant frequency overlap of the gain—loss distribution with the intensity pattern formed through the
interference of Rabi-coupled FB modes. A noteworthy feature is the appearance of an intensity-locked region at
the phase-transition point that is bounded by two beams formed through the double refraction of the unique
incident beam.

2.Model

Paraxial beam propagation in the wave-guide arrays periodically modulated along the direction of propagation
can be described through the Schrodinger equation:

2

ig—f +% + U[1+ e cos (oz) [w = 0, (1)
where 1) is the complex amplitude of the beam, x and z are transverse and longitudinal coordinates, respectively,
the amplitude of longitudinal modulations ¢ is taken to be small, i.e., ¢ < 1, is frequency of longitudinal
modulations, and the complex PT-symmetric potential is given by U = V' cos 27x/D) + iW sin (27x/D),
where D is the lattice period. The real part of U that describes the refractive index profile is symmetric in the
transverse direction while the imaginary part representing the gain—loss distribution is antisymmetric, i.e.,
tulfills the PT-symmetry condition.

The PT-symmetry of the Hamiltonian is necessary but not a sufficient condition for transmission spectrum
to be real. PT-symmetry is broken when imaginary amplitude of the refractive index W becomes higher than its
real amplitude V' [6, 7]. In the broken PT-symmetry regime, propagation constants merge together forming
pairs of complex conjugate values and thus making the wave propagation unstable. In what follows, we consider
two regimes of the wave propagation. In the first (under-critical) regime W < V, whereas in the second (phase-
transition) regime W = V. Both considered regimes belong to the unbroken (stable) phase when separate FB
modes exhibit stable propagation.

3. Coupled mode theory

The total field distribution in the wave-guide arrays can be approximated by a superposition of normalized FB
modes, i.e.,

90 /D
Y(x, z) = Z f A, (k, 2y, (k, x) exp [iﬁn (k)z]dk, )
n=17-7/D

where (3, (k) are the propagation constants and the corresponding FB modes ¢, (k, x) in the absence of any
modulations are given by

©, (k, x) = exp (ikx) i u' (k) exp (il%rx), 3)

l=—00

where u” (k) is the Ith Fourier coefficient of FB mode from the nth band with Bloch momentum k. The mode
population coefficients A, (k, z) are z-dependent and can be evaluated through [6, 7]
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+00
Ank, 2) = % exp[ ~if, (k)z ] fm G (—k, — ) (x, 2)dx. (4)
The latter expression was obtained utilizing the bi-orthogonality condition [6, 7]
+00
f G (—k, —x) ¢, (K, x)dx = %Témé(k — k. (5)

Equations (4) and (5) were derived with an additional condition imposed on eigenvectors’:
uy(ky >0,V n, k. (6)

For the regime of unbroken PT-symmetry (W/V = 0.8), the first three bands of the transmission spectra are
depicted in figure 1(a). As in the case of real periodic potential [28], longitudinal modulation can support Rabi
conversions between two different FB modes provided the resonant condition is satisfied; i.e., the frequency of
longitudinal modulations 3y must be matched to the difference of propagation constants of the corresponding
FB modes. The transitions between first and second band modes for the right and left incidences (positive and
negative Bloch wave numbers, respectively) are schematically shown by green arrows in figure 1(a). Following
the standard procedure [28], one can substitute expansion (2) into equation (1), apply bi-orthogonality
condition (5) (bi-orthogonality should be used because skewed FB modes of PT-symmetric lattices are not
orthogonal), and, after neglecting off-resonant terms, obtain coupled mode equations for the evolution of mode
population coefficients

i—aA”a(i" ) _ %Am(k, 2)Mun exp| (8, = B — )]
iw - %An(k, Z)Miyn €xp [i(ﬂn = P — 50)2]) @

where the coupling coefficients given by the overlap integral
D/2
My (k) = —f <p?;(—k, —x)Uyp,, (k, x)dx 8)
-D/2

remain purely real and positive if condition (6) is satisfied.

4. Propagation dynamics in the under-critical regime

The coupling coefficients for | — 2 transitions in the under-critical (V = 1and W = 0.8) regime are shown in
figure 1(b).

The striking difference with the case of Hermitian (real) Hamiltonians is asymmetry of the coupling
coefficients with respect to k, i.e., M, (k) = M,,,,(—k) and index interchange, i.e., M, (k) = M,,,, (k).
However, the coupling coefficients remain invariant under simultaneous index interchange and k reversal
M, (k) = M,,,(—k) resulting from their definition (8) and the fact that they are real. In figures 1(c)—(h), we
depict the propagation dynamics in the under-critical (V = 1and W = 0.8) regime for the case when the
resonance condition 3; — 8, — By = 0 was satisfied and only the firstband FB mode ¢, (ko, x) with single
Bloch wave-number k, was excited at the input. Hereinafter the amplitude of longitudinal modulations is taken
tobe ¢ = 0.05 and period oflattice is D = 2. The evolution of the first (blue curves) and second (green curves)
band mode populations are shown in figures 1(c) and (d) for theleft (koD/2m = —0.15) and right
(koD/27m = 0.15) tilted incidence, respectively. The light-colored thick lines represent analytical results
evaluated through solution of equation (7), whereas the dark-colored thin lines were obtained from equation (4)
with field distribution ¢ (x, z) found by a direct numerical solution of equation (1).

The mode populations oscillate with frequency Br, = €1/ My My, /2, which is identical to the frequency of
Rabi oscillations in real periodic potential [28]. However, the asymmetry of coupling coefficients results in
unequal amplitudes of mode population oscillations which ratio is given by max (|A, 1)/ max (|4 ) =
M,/ M;,. The physical reason for different amplitudes is that the exchange of energy between two FB modes is
augmented by their amplification (damping) due to the positive (negative) overlap of the intensity pattern with
the gain—loss distribution. The system can experience overall amplification (damping) if the integral of intensity-
weighted gain—loss distribution (distribution of imaginary part of refractive index) is positive (negative). For
example, in the case of the left tilted incidence (M, > M;;) in the first half-period, the second band mode
accepts power from the first band mode and is also amplified by the positive overlap, whereas in the second half-
period it loses its power to the first band mode yet it is also dampened by negative overlap. The first band mode in

®In [6, 7] expression for modes population and bi-orthogonality condition include the coefficients dy,, = £1 Our corresponding
expressions (equations (4, 5)) do not include these coefficients due to additional condition given by equation (6).
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Figure 1. (a) The first three bands of the transmission spectra for unbroken PT-symmetry (W/V = 0.8); green arrows denote I — 2
transitions for tilted incidence and the red arrow denotes 1 — 3 transition for normal incidence; (b) coupling coefficients M, (blue
curve) and My, (red curve); (c)—(h)—propagation dynamics of 1 — 2 transition for V.= 1, W = 0.8, = 0.05, D = 27 and the first
band FB mode with single Bloch wave-number at the input; frequency of longitudinal modulations satisfy resonance condition (3, (k)-
Ba(k)-By = 0;(c)and (d) evolutions of the first (blue curves) and second (green curves) band mode populations for left and right tilted
incidences respectively; light-colored thick lines—analytical results and dark-colored thin lines—numerical results; (e) and (f)
evolution of power normalized to input power for left and right tilted incidences respectively; red curves—analytical results, blue
curves—numerical results; (g) and (h) numerically found intensity evolution patterns for the left and right tilted incidences
respectively.

the first half-period loses its power to the second band mode yet it is also amplified by the positive overlap;
whereas in the second half-period it accepts power from the second band mode but is also damped by the
negative overlap. The evolution of the total power is given by

P(2)/P©) =1+ 1y (ko) sin® (B 2), ©)

where highly oscillating terms resulting from the non-orthogonality of FB modes were dropped, amplitude of
power oscillations is given by n,, (k) = 6, My, /M, — 1,and 6, = LDD//ZZ [, (k, x) |2dx/fj)//22 [y (k, x) I*dx
represents the ratio of power contents of different modes. In contrast with the case of real potential, this ratio is
not necessarily equal to one because FB modes were normalized using the bi-orthogonality condition (5). The
power evolution given by equation (9) is depicted by red curves in figures 1(e) and (f) that correspond to the left
koD/2m = —0.15and right (koD /27 = 0.15) tilted incidence respectively. For the left tilted incidence 7,, > 0.
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Figure 2. (a) Coupling coefficients M, 5 (blue curve) and M3, (red curve); (b)—(d) propagation dynamics of 1 — 3 transitions for
normal incidence of first band FB mode with single Bloch wave-number, V = 1, W = 0.8, = 0.05,and D = 27; frequency of
longitudinal modulations satisfy resonance condition [3;(k)-35(k)- 8y = 0; (b) evolutions of the first (blue curves) and third (green
curves) band mode populations for the normal incidence; light-colored thick lines denote analytical results, dark-colored thin lines
denote numerical results; (c) evolution of power normalized to input power for the normal incidence; red curve denotes analytical
results, blue curve denotes numerical results; (d) numerically found intensity evolution pattern for the normal incidence.

In this case, both modes and total power are amplified during the first half-period and dampened in the second
half-period. For the right tilted incidence 7,, < 0 so dynamics is opposite: both modes and total power are
dampened during the first half-period and amplified in the second half-period. The blue curves in figures 1(e)
and (f) represent power evolution obtained by direct numerical solution of equation (1). Numerically obtained
power exhibits fast oscillations around an analytical solution represented by equation (9) due to the non-
orthogonality of FB modes [6, 7]. These fast oscillations diminish in the vicinity of points where population of
one of the modes becomes small. The dynamics of the 1 — 2 transitions that are described previously can be also
observed in figures 1(g) and (h) depicting numerically found intensity evolution patterns for the cases of the left
and right tilted incidences, respectively. In the case of normal incidence M,; = 0 and M;, = 0 therefore the
system cannot support 1 — 2 transitions.

The coupling coefficients for I — 3 transitions are shown in figure 2(a). The dynamics in the case of 1 — 3
transitions are very similar for the tilted incidences and therefore are not shown here. The only difference with
respecttothe 1 — 2 transitions is that 63, M3, /M3 > 1 for the right tilted incidence and 03, M3, /M3 < 1 for
the left tilted incidence. Therefore, the power is initially increasing for the right tilted incidence and vice versa.
However for the normal incidence (k = 0) the dynamics of 1 — 3 transitions is different. The transition
between first and third band modes for the normal incidence is schematically shown by the red arrow in
figure 1(a). Coefficients M;;(k = 0) = 0 and M;;(k = 0) = 0 therefore 1 — 3 transitions are supported. The
evolution of the first (blue curves) and third (green curves) band mode populations for the case of normal
incidence are depicted in figure 2(b). The resonance condition 3; — 3 — By = 0 was satisfied and only the first
band mode ¢, (k¢, x) with single Bloch wave-number ko = Owas excited at the input. The light-colored thick
lines represent analytical results and dark-colored thin lines were obtained by substituting numerically found
field distribution 9 (x, z) into equation (4). The amplitudes of mode oscillations are equal in this case since
M (k = 0)/Mj3(k = 0) = 1.

Evolution of power for the 1 — 3 transition governed by equation (9) with index 2 replaced by 3 is shown in
figure 2(c) by the red curve. Power oscillations result from unequal power content of different modes,
specifically 65; = 1. The blue curve in figure 2(c) represents power evolution obtained by direct numerical
solution of equation (1). The fast oscillations of the numerical solution result from non-orthogonality of FB
modes. The dynamics of the 1 — 3 transitions that are described above can be also observed in figure 2(d)
depicting numerically found intensity evolution pattern for the case of normal incidence.

5. Propagation dynamics in the phase-transition regime

The most intriguing feature involves the propagation in the phase-transition regime when W/V = 1. The first
three bands of the transmission spectra in this regime (V = W = 1) are depicted in figure 3(a) and the coupling
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Figure 3. (a) The first three bands of the transmission spectra at phase-transition point (V = W = 1); (b) coupling coefficients M1,
(blue curve) and M, (red curve); (c)—(h) propagation dynamics of 1 — 2 transition at the phase-transition regime for V=1, W = 1,
€ = 0.05, D = 2m; frequency of longitudinal modulations satisfying the resonance condition 3, (k)-3,(k)- 5, = 0; (c), (d) input: first
band FB mode with single Bloch wave-number; (c) evolution of the first (blue curves) and second (green curves) band mode
populations; light-colored thick lines—analytical results, dark-colored thin lines—numerical results; (d) evolution of power
normalized to initial power; red curves—analytical results, blue curves—numerical results; (e)—(h) input: Gaussian beam ¢ (x,

z = 0) = exp(—x*/o2)exp(ikex), keD/2m = —0.15, 0 = 60; (e) evolution of the first (blue curves) and second (green curves) band
mode populations; light-colored thick lines—analytical results, dark-colored thin lines—numerical results; (f) numerically found
intensity evolution pattern; (g) numerical (blue curve) and analytical (red curve) output (z = 400) intensity profile; inset shows zoom
area; (h) evolution of power normalized to initial power; red curves—analytical results, blue curves—numerical results.

coefficients for I — 2 transitions are shown in figure 3(b). One can observe that M, = 0 V k < 0. It follows
then from equation (7) that for the left tilted incidence A; = const, while

1—exp[i(6 - B2~ Bo)z]
ﬂl - ﬁZ - ﬁO

Ay(k, 2) = §A1 (k) Moy (k) + Ay (k, 0). (10)

Takinglimit of equation (10) at k — ko and assuming that the resonance condition
B1(ko) — Ba(ko) — Bo (ko) = 0 was satisfied one finds that

A3k 2) = == (ka) My (ko)z + 42 (ki ). an

Substituting expression (10) for A, and equation (3) for ¢, into the n = 2 term of equation (2) and
integrating over k by the method of residues one finds that
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k—ko)

9B

j://z Ay (k, ), (k, x) exp [iﬁz(k)z]dk = %Al(ko)Mlz(ko) X rect[x, —z— , —z%

Ok

ok

X exp [iﬁz(ko)z]goz(ko, x) + f’r//z Ay (k, 0y, (k, x) exp [iﬂz (k)z]dk,
(12)

where rect(x, x;, %) = lif x € [x, %]and rect(x, x;, %) = 0if x € [x, %], and

X = (061/0k — 08,/ 0k) k=, In the derivation of equation (12) we assumed that the resonance condition

By (ko) — B2(ko) — Bo (ko) = 0was satisfied and neglected diffraction terms that are proportional to(k — ko)®.
In figures 3(c), (d) we depict the propagation dynamics in the phase-transition (V = W = 1) regime for the

case when the resonance condition 3; — 3, — By = Oissatisfied and only the first band FB mode ¢, (ko, x)

with single Bloch wave-number kD /27=—0.15 is excited at the input. Population of the first band mode (blue

line in figure 3(c)) remains constant while population of the second band mode (green line in figure 3(c))

increases linearly. The light-colored thick lines represent analytical results given by A; = const and

equation (11) with A, (ko, 0) = 0 for first and second band modes respectively. Dark-colored thin lines were

obtained by substituting numerically found field distribution ' (x, z) into equation (4). The second band mode

is amplified at a constant rate due to the constant population of the first band mode and positive overlap of the

intensity pattern with gain—loss distribution. The total power, averaged over the fast oscillations, grows

quadratically according to

P(z)/P(z=0) = ¢e’z® + 1, (13)

where ¢;; = 0,;M,,%/4. The power evolution given by equation (13) is depicted by the red curve in figure 3(d).
The blue curve in figure 3(d) represents numerically found power evolution. The fast oscillations of numerical
solution result from the beating of non-orthogonal FB modes.

In the following we will focus on the evolution of the Gaussian incident beam which can be represented as
superposition of modes with different Bloch wave numbers. The propagation dynamics of the left tilted incident
beam ¢ (x, z = 0) = exp(—xz/az) exp (ikox) (o = 60, kgD/2m=—0.15) ,is shown in figures 3(e)—(h). The
evolution of the first (blue curves) and second (green curves) band mode populations at k = kg are depicted in
figure 3(e). The light-colored thick lines represent analytical results given by A; = const and equation (11) for
first and second band modes respectively. Dark-colored thin lines were obtained by substituting numerically
found field distribution )(x, z) into equation (4).

The population of the first band mode remains constant upon propagation and the population of the second
band mode grows almost linearly (a small deviation of linear growth at the beginning is due to the A, (ko, 0) = 0
term of equation (11)). The numerically obtained evolution of intensity pattern is shown in figure 3(f). The video
file describing the evolution of the intensity when Gaussian beam is excited at the input is presented in the online
supplementary material. We observe the phenomenon of double refraction which manifests itself as splitting of
the single incident beam into two diverging beams propagating with the group velocities of the first and second
band modes, i.e., 33,/ 0k (k = ko)and 03, /0k (k = k) respectively [6, 7]. In addition to the double refraction,
the intensity pattern exhibits an intensity-locked region between these diverging beams, which develops due to
the positive overlap of the intensity pattern with the gain—loss distribution. Intensity oscillations in this region
conform to the periodicity of the lattice while the amplitude of oscillations remains constant between the two
diverging beams. The amplitude of the intensity oscillation in this region remains constant upon propagation
whereas its width grows linearly as the distance between the diverging beams increases. This intensity-locked
region corresponds to the first term on the RHS of equation (12). Its intensity (absolute value squared) at the
output plane (z = 400) is shown in figure 3(g) by the red curve along with numerically found intensity (blue
curve).

The evolution of the total power is given by

Pi(k) )

P(2) z
PO D’

P(0)

=1+ (ko) (96:/0k — 98,/ 0k)(em)’ (14)

where P, (k) = |A (k, z = 0) f_ 1;//22 [, (k, x) [*dx and the highly oscillating terms were dropped. The power
evolution given by equation (14) is depicted by the red curve in figure 3(h). The blue curve in figure 3(h)
represents the numerically found total power of the beam. As previously, the fast oscillations result from the
beating of non-orthogonal FB modes while the linear power growth is due to the linearly increasing width of the
intensity-locked region.

In the case of right tilted incidence the linear amplification can be implemented through the 1 — 3
transitionsince Moy = 0 V k > 0,yet M3; > 0 V k > Oand M3 = 0 V k > 0. Evolution of the third band
mode population, power, and field for the 1 — 3 transition is governed by equations (10)—(13) with index 2

7
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Figure 4. (a) Amplitudes of power oscillations 77,7 and 77,; versus k for W/V = 0.8; (b) growth coefficients ¢,; and ¢3; versus k for
=V.

replaced by 3. In the case of normal incidence (k = 0) second and third bands coalesce forming an exceptional
point. Corresponding FB states become identical and self-orthogonal at this point [31]. This implies that in
order for these states to remain normalized to unite, their amplitudes (components of eigenvectors u) should
become extremelylarge as k — 0. Our coupled mode analysis fails at k = 0 because self-orthogonality
precludes normalization of FB modes. However direct simulation of beam propagation shows that the
amplitude of the intensity-locked region remains finite and continuously changes as k — 0 because the product
of infinitely large u* with diminishing coupling coefficients [ My, (k = 0) = 0] remains finite and continuous.

6. Control of power

Importantly, in the regime of unbroken PT-symmetry (W < V) one can manipulate both the sign and
magnitude of power oscillations by changing the angle of incidence and corresponding adjustment of
longitudinal frequency modulations to satisfy the phase matching condition. This can be observed in figure 4(a),
which depicts amplitudes of power oscillations 7,, and 775, versus Bloch momentum k for W/V = 0.8. However
at the phase-transition regime W = V only the rate of always positive power amplification can be manipulated
through angular dependence of growth coefficients ¢;; or ¢31. Figure 4(b) shows ¢;; and ¢3; versus kfor W = V.

7. Propagation dynamics in two-dimensional lattices

The phenomena described so far are not particular to one-dimensional lattices. We have also investigated
propagation in longitudinally modulated two-dimensional PT-symmetric lattices with potential

U=V [cos (2mx/Dy) + cos (27ry /Dy)] +iW [sin (2mx/Dy) + sin (277)/ /Dy)], and focused particularly on
the phase-transition regime (V = W = 1). The amplitude of the longitudinal modulationsis¢ = 0.05, while
normally the incident beam profile is given by ¢ (x, y, z = 0) = exp[—(x" + y”)/0’]and the frequency of
longitudinal modulations satisfies resonance condition (3, (kx, ky) - B (kx, ky) — Bo=0(k;=0,k,=0).
Figure 5(a) depicts the intensity pattern at the output plane (z = 480). The intensity-locked regions in the two-
dimensional case correspond to two ‘ridges’ that are directed along the x and y axes. Intensity oscillations in these
‘ridges’ conform to the periodicity of the lattice while the amplitude of oscillations remains constant between the
beams that diverge in the x and y direction from the main beam propagating along the z axis. The flat ‘plateau’
region between the two ‘ridges’ develops due to the secondary generation of intensity-locked regions in
perpendicular directions: the ‘x-ridge’ radiates in the y direction and the ‘y-ridge’ radiates in the x direction. The
development of this square ‘plateau’ region is responsible for quadratic amplification of power shown in

figure 5(b).

8. Conclusions

While power amplification has been predicted in the gain—loss media [32, 33], in the present work we have
investigated power control phenomena in the complex PT-symmetric wave-guide arrays that are periodically
modulated along the direction of propagation. We demonstrated periodic power oscillations as well as linear or
quadratic amplification of the power that occurs in the regime of unbroken PT-symmetry at certain resonant
frequencies of longitudinal modulation. This differential power response stems from the overlap of the gain—loss
distribution with the intensity pattern formed through interference of Rabi-coupled FB modes. Linear
amplification that occurs at the phase-transition regime is due to the development of the intensity-locked region
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Figure 5. Numerically simulated propagation dynamics of normally incident beam in a longitudinally modulated two-dimensional
PT-symmetric lattice at phase-transition point; frequency of longitudinal modulations satisfying the resonance condition 3, (k,k,)-
Bakyk,)-By = 0;(a) intensity pattern at output plane (z = 480); (b) beam power versus propagation distance.

between the two diverging beams induced through double refraction of the unique incident beam. However,
when a single Bloch mode is excited at the input its power oscillates in the under-critical regime, whereas in the
phase-transition regime it grows quadratically. In the phase-transition regime, only the rate of power
amplification can be controlled through the angular dependence of the coupling coefficients. On the other hand,
both the sign and magnitude of power oscillations that occur in the under-critical regime can be manipulated
through the incidence angle of the beam. In both cases, the frequency of longitudinal modulations should be
adjusted accordingly to satisfy the phase matching condition. We used coupled mode theory to analyze
quantitatively the beam dynamics and verified the results numerically. We found similar effects in the two-
dimensional longitudinally modulated PT-symmetric lattices. The phase-transition point in the two-
dimensional case is characterized by the development of perpendicular intensity-locked ‘ridges’ with a flat
‘plateau’ region between them and the quadratic amplification of the power. The efficient power control
technique introduced here should pave the way for new discoveries in the flourishing field of PT-symmetric
optics and may have significant applications in integrated PT photonic devices as well as in gain—loss
metamaterials and metasurfaces.
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