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Abstract
We investigate wave transport properties of parity–time (PT) symmetric lattices that are periodically
modulated along the direction of propagation.Wedemonstrate that in the regime of unbroken PT-
symmetry, the systemFloquet–Blochmodesmay interfere constructively leading to either controlled
oscillations or power absorption and unlimited amplification occurring exactly at the phase-transition
point. The differential power response is affected by the overlap of the gain and loss system
distributionwithwave intensity pattern that is formed throughRabi oscillations engaging the coupled
Floquet–Blochmodes.

1. Introduction

A special class of non-HermitianHamiltonians that are invariant under simultaneous parity and time reversal
and possess a purely real eigenvalue spectrumwas initially investigated in the context of quantummechanics [1].
The PT-symmetry condition requires the real part of the complex potential in the Schrödinger equation to be
symmetric, and its imaginary part representing the gain–loss distribution to be antisymmetric. These systems
undergo a PT-symmetry breaking transition at some critical peak value of the imaginary part of the potential.
Above this threshold value, the spectrum ceases to be real, implying instability for the quantum system. The idea
of PT-symmetry has been applied tomany areas such as cavity quantum electrodynamics [2], classical
mechanics [3], andmagnetohydrodynamics [4, 5] yet perhaps themost intriguing features of PT-symmetry are
being investigated in the context of optics [6–17]. Optical systemswith a PT-invariant complex refractive index
supporting stable propagation of waveswere predicted theoretically [6, 7] and demonstrated experimentally
[8, 9]. The features of the linear regime include double refraction, power oscillations, nonreciprocal diffraction
[6–9], amplification of theGoos–Hänchen effect [10], and unidirectional invisibility [11–13]. On the other
hand, implementation of unidirectional dynamics [14, 15], nonreciprocal soliton scattering [16], and switching
[17] require combined action of PT-symmetry and nonlinearity. Experimental studies of active PT-symmetric
electric circuits [18] and theoretical investigations of PT-symmetric nonlinearmagneticmetamaterials [19]were
also reported recently.

Longitudinallymodulated PT-symmetric structures, which have been attracting increasing attention,
exhibit even richer behavior and potential for a broad range of applications. Recent investigations in this
direction include theoretical studies of wave dynamics in complex crystals with PT-symmetry subjected to a
sinusoidal ac force [20] that predicted dynamic localization of awave packet due to the band collapse in the
regime of unbroken PT-symmetry and nonreciprocal Bragg scattering in the vicinity of the breaking point. In
[21], the authors introduce the concept of local PT-symmetric invariance exemplified by two coupled
waveguides whose longitudinallymodulated gain–loss profile remains antisymmetric at any propagation
distance. Depending on the initial conditions, such systems can support symmetric or antisymmetric power
evolution and unidirectional phase exchange betweenwaveguides. The phase-transition in PT-symmetric
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tight-binding lattices with periodic longitudinalmodulations of the gain–loss distributionwas shown to depend
on the ratio between frequency and amplitude of themodulations [22]. In the unbroken PT regime, these
systems exhibited hyperballistic transport properties, while in the vicinity of phase-transition, they supported
diffraction-free propagation. A stochastic PT-symmetric coupler withfluctuating parameters, such that the
gains and the losses are exactly balanced on average, was investigated in [23]. It was shown that even in the
regime of unbroken PT symmetry, the statistically averaged intensity of thewave in such systems grows.
Nonlinear properties of longitudinallymodulated PT-symmetric systems (dual-core nonlinear waveguides)
include stabilization of the solitons by application ofmanagement, specifically periodic simultaneous switching
of the sign of the gain, loss, and inter-core coupling [24]. Recently it was also shown that several classes of
longitudinallymodulated non-PT-symmetric waveguides can possess an all-real spectrum [25, 26].

Among other effects, optical Rabi oscillations, i.e., resonant power transitions between different lightmodes
originally proposed [27, 28] and observed [29] inHermitianwaveguides andwave-guide arrays, were also
predicted and periodicallymodulated in the direction of propagation PT-symmetric waveguides [30]. In the
present work, we focus directly on these phenomena, specifically on propagation dynamics in complex PT-
symmetric wave-guide arrays periodicallymodulated along the direction of propagation.We show that in the
regime of unbroken PT-symmetry when all Floquet–Bloch (FB)modes remain stable,mode interference results
in awealth of behaviors including damping, amplification, or even unlimited amplification of incident beam
power distributed linearly or quadratically in the propagation direction. The different power regimes depend on
the resonant frequency overlap of the gain–loss distributionwith the intensity pattern formed through the
interference of Rabi-coupled FBmodes. A noteworthy feature is the appearance of an intensity-locked region at
the phase-transition point that is bounded by two beams formed through the double refraction of the unique
incident beam.

2.Model

Paraxial beampropagation in thewave-guide arrays periodicallymodulated along the direction of propagation
can be described through the Schrödinger equation:
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where y is the complex amplitude of the beam, x and z are transverse and longitudinal coordinates, respectively,
the amplitude of longitudinalmodulations e is taken to be small, i.e., e  1,b0 is frequency of longitudinal
modulations, and the complex PT-symmetric potential is given by p p= +( ) ( )U V x D W x Dcos 2 i sin 2 ,
where D is the lattice period. The real part ofU that describes the refractive index profile is symmetric in the
transverse directionwhile the imaginary part representing the gain–loss distribution is antisymmetric, i.e.,
fulfills the PT-symmetry condition.

The PT-symmetry of theHamiltonian is necessary but not a sufficient condition for transmission spectrum
to be real. PT-symmetry is brokenwhen imaginary amplitude of the refractive indexW becomes higher than its
real amplitudeV [6, 7]. In the broken PT-symmetry regime, propagation constantsmerge together forming
pairs of complex conjugate values and thusmaking thewave propagation unstable. Inwhat follows, we consider
two regimes of thewave propagation. In the first (under-critical) regime <W V , whereas in the second (phase-
transition) regime =W V .Both considered regimes belong to the unbroken (stable) phase when separate FB
modes exhibit stable propagation.

3. Coupledmode theory

The totalfield distribution in thewave-guide arrays can be approximated by a superposition of normalized FB
modes, i.e.,

⎡⎣ ⎤⎦òåy j b=
p

p

=

¥

-
( ) ( ) ( ) ( ) ( )x z A k z k x k z k, , , exp i d , 2

n D

D

n n n
1

where b ( )kn are the propagation constants and the corresponding FBmodesj ( )k x,n in the absence of any
modulations are given by
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where ( )u kl
n is the lth Fourier coefficient of FBmode from the nth bandwith Blochmomentum k. Themode

population coefficients ( )A k z,n are z-dependent and can be evaluated through [6, 7]
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The latter expressionwas obtained utilizing the bi-orthogonality condition [6, 7]
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Equations (4) and (5)were derivedwith an additional condition imposed on eigenvectors6:
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For the regime of unbroken PT-symmetry (W/V=0.8), thefirst three bands of the transmission spectra are
depicted infigure 1(a). As in the case of real periodic potential [28], longitudinalmodulation can support Rabi
conversions between two different FBmodes provided the resonant condition is satisfied; i.e., the frequency of
longitudinalmodulations b0 must bematched to the difference of propagation constants of the corresponding
FBmodes. The transitions between first and second bandmodes for the right and left incidences (positive and
negative Blochwave numbers, respectively) are schematically shown by green arrows infigure 1(a). Following
the standard procedure [28], one can substitute expansion (2) into equation (1), apply bi-orthogonality
condition (5) (bi-orthogonality should be used because skewed FBmodes of PT-symmetric lattices are not
orthogonal), and, after neglecting off-resonant terms, obtain coupledmode equations for the evolution ofmode
population coefficients
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where the coupling coefficients given by the overlap integral
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remain purely real and positive if condition (6) is satisfied.

4. Propagation dynamics in the under-critical regime

The coupling coefficients for 1→2 transitions in the under-critical (V=1 andW=0.8) regime are shown in
figure 1(b).

The striking difference with the case ofHermitian (real)Hamiltonians is asymmetry of the coupling
coefficients with respect to k, i.e., ¹ -( ) ( )M k M knm nm and index interchange, i.e., ¹( ) ( )M k M k .nm mn

However, the coupling coefficients remain invariant under simultaneous index interchange and k reversal
= -( ) ( )M k M knm mn resulting from their definition (8) and the fact that they are real. Infigures 1(c)–(h), we

depict the propagation dynamics in the under-critical (V=1 andW=0.8) regime for the case when the
resonance condition b b b- - = 01 2 0 was satisfied and only thefirst band FBmodej ( )k x,1 0 with single
Blochwave-number k0 was excited at the input.Hereinafter the amplitude of longitudinalmodulations is taken
to be e = 0.05 and period of lattice is p=D 2 .The evolution of the first (blue curves) and second (green curves)
bandmode populations are shown infigures 1(c) and (d) for the left (k0D/2π=−0.15) and right

p =( )k D 2 0.150 tilted incidence, respectively. The light-colored thick lines represent analytical results
evaluated through solution of equation (7), whereas the dark-colored thin lineswere obtained from equation (4)
withfield distribution y ( )x z, found by a direct numerical solution of equation (1).

Themode populations oscillate with frequency b e= M M 2,Rb 21 12 which is identical to the frequency of
Rabi oscillations in real periodic potential [28]. However, the asymmetry of coupling coefficients results in
unequal amplitudes ofmode population oscillations which ratio is given by =( ) ( )A Amax max2

2
1

2

M M .21 12 The physical reason for different amplitudes is that the exchange of energy between two FBmodes is
augmented by their amplification (damping) due to the positive (negative) overlap of the intensity patternwith
the gain–loss distribution. The system can experience overall amplification (damping) if the integral of intensity-
weighted gain–loss distribution (distribution of imaginary part of refractive index) is positive (negative). For
example, in the case of the left tilted incidence >( )M M21 12 in thefirst half-period, the second bandmode
accepts power from thefirst bandmode and is also amplified by the positive overlap, whereas in the second half-
period it loses its power to the first bandmode yet it is also dampened by negative overlap. Thefirst bandmode in

6
In [6, 7] expression formodes population and bi-orthogonality condition include the coefficients dkn=±1Our corresponding

expressions (equations (4, 5)) donot include these coefficients due to additional condition given by equation (6).
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thefirst half-period loses its power to the second bandmode yet it is also amplified by the positive overlap;
whereas in the second half-period it accepts power from the second bandmode but is also damped by the
negative overlap. The evolution of the total power is given by

h b= + ( ) ( )( ) ( ) ( )P z P k z0 1 sin , 9Rb21 0
2

where highly oscillating terms resulting from the non-orthogonality of FBmodeswere dropped, amplitude of

power oscillations is given by h q= -( )k M M 1,21 21 21 12 and ò òq j j=
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represents the ratio of power contents of differentmodes. In contrast with the case of real potential, this ratio is
not necessarily equal to one because FBmodeswere normalized using the bi-orthogonality condition (5). The
power evolution given by equation (9) is depicted by red curves infigures 1(e) and (f) that correspond to the left
k0D/2π=−0.15 and right p =( )k D 2 0.150 tilted incidence respectively. For the left tilted incidence h > 0.21

Figure 1. (a)Thefirst three bands of the transmission spectra for unbroken PT-symmetry (W/V=0.8); green arrows denote 1→2
transitions for tilted incidence and the red arrowdenotes 1→3 transition for normal incidence; (b) coupling coefficientsM12 (blue
curve) andM21 (red curve); (c)–(h)—propagation dynamics of 1→2 transition forV=1,W=0.8, ε=0.05,D=2π and thefirst
band FBmodewith single Blochwave-number at the input; frequency of longitudinalmodulations satisfy resonance conditionβ1(k)-
β2(k)-β0=0; (c) and (d) evolutions of thefirst (blue curves) and second (green curves) bandmode populations for left and right tilted
incidences respectively; light-colored thick lines—analytical results and dark-colored thin lines—numerical results; (e) and (f)
evolution of power normalized to input power for left and right tilted incidences respectively; red curves—analytical results, blue
curves—numerical results; (g) and (h)numerically found intensity evolution patterns for the left and right tilted incidences
respectively.
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In this case, bothmodes and total power are amplified during thefirst half-period and dampened in the second
half-period. For the right tilted incidence h < 021 so dynamics is opposite: bothmodes and total power are
dampened during the first half-period and amplified in the second half-period. The blue curves infigures 1(e)
and (f) represent power evolution obtained by direct numerical solution of equation (1). Numerically obtained
power exhibits fast oscillations around an analytical solution represented by equation (9) due to the non-
orthogonality of FBmodes [6, 7]. These fast oscillations diminish in the vicinity of points where population of
one of themodes becomes small. The dynamics of the 1→2 transitions that are described previously can be also
observed infigures 1(g) and (h)depicting numerically found intensity evolution patterns for the cases of the left
and right tilted incidences, respectively. In the case of normal incidence =M 021 and =M 012 therefore the
system cannot support 1→2 transitions.

The coupling coefficients for 1→3 transitions are shown in figure 2(a). The dynamics in the case of 1→3
transitions are very similar for the tilted incidences and therefore are not shown here. The only difference with
respect to the 1→2 transitions is that q >M M 131 31 13 for the right tilted incidence and q <M M 131 31 13 for
the left tilted incidence. Therefore, the power is initially increasing for the right tilted incidence and vice versa.
However for the normal incidence ( = )k 0 the dynamics of 1→3 transitions is different. The transition
betweenfirst and third bandmodes for the normal incidence is schematically shownby the red arrow in
figure 1(a). Coefficients = ¹( )M k 0 031 and = ¹( )M k 0 013 therefore 1→3 transitions are supported. The
evolution of thefirst (blue curves) and third (green curves) bandmode populations for the case of normal
incidence are depicted infigure 2(b). The resonance condition b b b- - = 01 3 0 was satisfied and only thefirst
bandmodej ( )k x,1 0 with single Blochwave-number =k 00 was excited at the input. The light-colored thick
lines represent analytical results and dark-colored thin lines were obtained by substituting numerically found
field distribution y ( )x z, into equation (4). The amplitudes ofmode oscillations are equal in this case since

= = =( ) ( )M k M k0 0 131 13 .
Evolution of power for the 1→3 transition governed by equation (9)with index 2 replaced by 3 is shown in

figure 2(c) by the red curve. Power oscillations result fromunequal power content of differentmodes,
specifically q ¹ 1.31 The blue curve infigure 2(c) represents power evolution obtained by direct numerical
solution of equation (1). The fast oscillations of the numerical solution result fromnon-orthogonality of FB
modes. The dynamics of the 1→3 transitions that are described above can be also observed infigure 2(d)
depicting numerically found intensity evolution pattern for the case of normal incidence.

5. Propagation dynamics in the phase-transition regime

Themost intriguing feature involves the propagation in the phase-transition regimewhenW/V=1. Thefirst
three bands of the transmission spectra in this regime (V=W=1) are depicted infigure 3(a) and the coupling

Figure 2. (a)Coupling coefficientsM13 (blue curve) andM31 (red curve); (b)–(d) propagation dynamics of 1→3 transitions for
normal incidence offirst band FBmodewith single Blochwave-number,V=1,W=0.8, ε=0.05, andD=2π; frequency of
longitudinalmodulations satisfy resonance conditionβ1(k)-β3(k)-β0=0; (b) evolutions of thefirst (blue curves) and third (green
curves) bandmode populations for the normal incidence; light-colored thick lines denote analytical results, dark-colored thin lines
denote numerical results; (c) evolution of power normalized to input power for the normal incidence; red curve denotes analytical
results, blue curve denotes numerical results; (d)numerically found intensity evolution pattern for the normal incidence.
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coefficients for 1→2 transitions are shown infigure 3(b). One can observe that = "M k0 0.12 It follows
then from equation (7) that for the left tilted incidence =A const,1 while

⎡⎣ ⎤⎦e b b b

b b b
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Taking limit of equation (10) at k k0 and assuming that the resonance condition

b b b- - =( ) ( ) ( )k k k 01 0 2 0 0 0 was satisfied one finds that

e
= - +( ) ( ) ( ) ( ) ( )A k z A k M k z A k,

i

2
, 0 . 112 0 1 0 21 0 2 0

Substituting expression (10) forA2 and equation (3) forf2 into the n=2 termof equation (2) and
integrating over k by themethod of residues onefinds that

Figure 3. (a)Thefirst three bands of the transmission spectra at phase-transition point (V=W=1); (b) coupling coefficientsM12

(blue curve) andM21 (red curve); (c)–(h) propagation dynamics of 1→2 transition at the phase-transition regime forV=1,W=1,
ε=0.05,D=2π; frequency of longitudinalmodulations satisfying the resonance conditionβ1(k)-β2(k)-β0=0; (c), (d) input:first
band FBmodewith single Blochwave-number; (c) evolution of thefirst (blue curves) and second (green curves) bandmode
populations; light-colored thick lines—analytical results, dark-colored thin lines—numerical results; (d) evolution of power
normalized to initial power; red curves—analytical results, blue curves—numerical results; (e)–(h) input: Gaussian beamψ(x,
z=0)=exp(−x2/σ 2)exp(ik0x), k0D/2π=−0.15,σ=60; (e) evolution of thefirst (blue curves) and second (green curves) band
mode populations; light-colored thick lines—analytical results, dark-colored thin lines—numerical results; (f)numerically found
intensity evolution pattern; (g)numerical (blue curve) and analytical (red curve) output (z=400) intensity profile; inset shows zoom
area; (h) evolution of power normalized to initial power; red curves—analytical results, blue curves—numerical results.
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where =( )x x xrect , , 11 2 if Î [ ]x x x,1 2 and =( )x x xrect , , 01 2 if Ï [ ]x x x, ,1 2 and
c b b= ¶ ¶ - ¶ ¶ =( )k k .k k1 2 0 In the derivation of equation (12)we assumed that the resonance condition
b b b- - =( ) ( ) ( )k k k 01 0 2 0 0 0 was satisfied and neglected diffraction terms that are proportional to -( )k k0

2.
Infigures 3(c), (d)we depict the propagation dynamics in the phase-transition (V=W=1) regime for the

case when the resonance condition b b b- - = 01 2 0 is satisfied and only thefirst band FBmodej ( )k x,1 0

with single Blochwave-number p=-k D 2 0.150 is excited at the input. Population of the first bandmode (blue
line infigure 3(c)) remains constantwhile population of the second bandmode (green line infigure 3(c))
increases linearly. The light-colored thick lines represent analytical results given by =A const1 and
equation (11)with =( )A k , 0 02 0 forfirst and second bandmodes respectively. Dark-colored thin lineswere
obtained by substituting numerically foundfield distribution y ( )x z, into equation (4). The second bandmode
is amplified at a constant rate due to the constant population of the first bandmode and positive overlap of the
intensity patternwith gain–loss distribution. The total power, averaged over the fast oscillations, grows
quadratically according to

V e= = +( ) ( ) ( )P z P z z0 1, 1321
2 2

where V q= M 4.21 21 21
2 The power evolution given by equation (13) is depicted by the red curve in figure 3(d).

The blue curve infigure 3(d) represents numerically found power evolution. The fast oscillations of numerical
solution result from the beating of non-orthogonal FBmodes.

In the followingwewill focus on the evolution of theGaussian incident beamwhich can be represented as
superposition ofmodes with different Blochwave numbers. The propagation dynamics of the left tilted incident
beam y s= = -( ) ( ) ( )x z x k x, 0 exp exp i2 2

0 (s = 60, p=- )k D 2 0.150 , is shown infigures 3(e)–(h). The
evolution of thefirst (blue curves) and second (green curves) bandmode populations at =k k0 are depicted in
figure 3(e). The light-colored thick lines represent analytical results given by =A const1 and equation (11) for
first and second bandmodes respectively. Dark-colored thin lines were obtained by substituting numerically
foundfield distributionψ(x, z) into equation (4).

The population of the first bandmode remains constant upon propagation and the population of the second
bandmode grows almost linearly (a small deviation of linear growth at the beginning is due to the ¹( )A k , 0 02 0

termof equation (11)). The numerically obtained evolution of intensity pattern is shown infigure 3(f). The video
file describing the evolution of the intensity whenGaussian beam is excited at the input is presented in the online
supplementarymaterial.We observe the phenomenon of double refractionwhichmanifests itself as splitting of
the single incident beam into two diverging beams propagatingwith the group velocities of the first and second
bandmodes, i.e., b¶ ¶ =( )k k k1 0 and b¶ ¶ =( )k k k2 0 respectively [6, 7]. In addition to the double refraction,
the intensity pattern exhibits an intensity-locked region between these diverging beams, which develops due to
the positive overlap of the intensity patternwith the gain–loss distribution. Intensity oscillations in this region
conform to the periodicity of the lattice while the amplitude of oscillations remains constant between the two
diverging beams. The amplitude of the intensity oscillation in this region remains constant upon propagation
whereas its width grows linearly as the distance between the diverging beams increases. This intensity-locked
region corresponds to thefirst termon the RHS of equation (12). Its intensity (absolute value squared) at the
output plane (z=400) is shown infigure 3(g) by the red curve alongwith numerically found intensity (blue
curve).

The evolution of the total power is given by

V b b ep= + ¶ ¶ - ¶ ¶ ´( )( ) ( )( )
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k k k
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D

D
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2

2
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/

/
and the highly oscillating termswere dropped. The power

evolution given by equation (14) is depicted by the red curve in figure 3(h). The blue curve infigure 3(h)
represents the numerically found total power of the beam.As previously, the fast oscillations result from the
beating of non-orthogonal FBmodeswhile the linear power growth is due to the linearly increasing width of the
intensity-locked region.

In the case of right tilted incidence the linear amplification can be implemented through the 1→3
transition since = "M k0 0,21 yet > " >M k0 031 and = "M k0 0.13 Evolution of the third band
mode population, power, and field for the 1→3 transition is governed by equations (10)–(13)with index 2
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replaced by 3. In the case of normal incidence (k=0) second and third bands coalesce forming an exceptional
point. Corresponding FB states become identical and self-orthogonal at this point [31]. This implies that in
order for these states to remain normalized to unite, their amplitudes (components of eigenvectors )ul

2 should
become extremely large as k 0.Our coupledmode analysis fails at k=0 because self-orthogonality
precludes normalization of FBmodes. However direct simulation of beampropagation shows that the
amplitude of the intensity-locked region remainsfinite and continuously changes as k 0 because the product
of infinitely large ul

2 with diminishing coupling coefficients [ = =( ) ]M k 0 021 remainsfinite and continuous.

6. Control of power

Importantly, in the regime of unbroken PT-symmetry (W<V) one canmanipulate both the sign and
magnitude of power oscillations by changing the angle of incidence and corresponding adjustment of
longitudinal frequencymodulations to satisfy the phasematching condition. This can be observed in figure 4(a),
which depicts amplitudes of power oscillations h21 and h31 versus Blochmomentum k forW/V=0.8.However
at the phase-transition regimeW=V only the rate of always positive power amplification can bemanipulated
through angular dependence of growth coefficients V21or V .31 Figure 4(b) shows V21 and V31 versus k forW=V.

7. Propagation dynamics in two-dimensional lattices

The phenomena described so far are not particular to one-dimensional lattices.We have also investigated
propagation in longitudinallymodulated two-dimensional PT-symmetric lattices with potential

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦p p p p= + + +( ) ( )( ) ( )U V x D y D W x D y Dcos 2 cos 2 i sin 2 sin 2 ,x y x y and focused particularly on

the phase-transition regime (V=W=1). The amplitude of the longitudinalmodulations is ε=0.05, while
normally the incident beamprofile is given by y s= = - +( ) [ ( ) ]x y z x y, , 0 exp 2 2 2 and the frequency of

longitudinalmodulations satisfies resonance condition b b b- - =( ) ( )k k k k, , 0x y x y1 2 0 ( =k 0,x = )k 0 .y

Figure 5(a) depicts the intensity pattern at the output plane (z=480). The intensity-locked regions in the two-
dimensional case correspond to two ‘ridges’ that are directed along the x and y axes. Intensity oscillations in these
‘ridges’ conform to the periodicity of the lattice while the amplitude of oscillations remains constant between the
beams that diverge in the x and y direction from themain beampropagating along the z axis. Theflat ‘plateau’
region between the two ‘ridges’ develops due to the secondary generation of intensity-locked regions in
perpendicular directions: the ‘x-ridge’ radiates in the y direction and the ‘y-ridge’ radiates in the x direction. The
development of this square ‘plateau’ region is responsible for quadratic amplification of power shown in
figure 5(b).

8. Conclusions

While power amplification has been predicted in the gain–lossmedia [32, 33], in the present workwe have
investigated power control phenomena in the complex PT-symmetric wave-guide arrays that are periodically
modulated along the direction of propagation.We demonstrated periodic power oscillations aswell as linear or
quadratic amplification of the power that occurs in the regime of unbroken PT-symmetry at certain resonant
frequencies of longitudinalmodulation. This differential power response stems from the overlap of the gain–loss
distributionwith the intensity pattern formed through interference of Rabi-coupled FBmodes. Linear
amplification that occurs at the phase-transition regime is due to the development of the intensity-locked region

Figure 4. (a)Amplitudes of power oscillations η21 and η21 versus k forW/V=0.8; (b) growth coefficients ς21 and ς31 versus k for
W=V.
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between the two diverging beams induced through double refraction of the unique incident beam.However,
when a single Blochmode is excited at the input its power oscillates in the under-critical regime, whereas in the
phase-transition regime it grows quadratically. In the phase-transition regime, only the rate of power
amplification can be controlled through the angular dependence of the coupling coefficients. On the other hand,
both the sign andmagnitude of power oscillations that occur in the under-critical regime can bemanipulated
through the incidence angle of the beam. In both cases, the frequency of longitudinalmodulations should be
adjusted accordingly to satisfy the phasematching condition.We used coupledmode theory to analyze
quantitatively the beamdynamics and verified the results numerically.We found similar effects in the two-
dimensional longitudinallymodulated PT-symmetric lattices. The phase-transition point in the two-
dimensional case is characterized by the development of perpendicular intensity-locked ‘ridges’with aflat
‘plateau’ region between them and the quadratic amplification of the power. The efficient power control
technique introduced here should pave theway for new discoveries in the flourishing field of PT-symmetric
optics andmay have significant applications in integrated PTphotonic devices aswell as in gain–loss
metamaterials andmetasurfaces.
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