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Abstract

We discuss the known construction of two interacting superconducting circuits based on Josephson
junctions, which can be precisely engineered and easily controlled. In particular, we use the parametric
excitation of two circuits realized by an instant change of the qubit coupling to study entropic and
information properties of the density matrix of a composite system. We obtain the density matrix from
the initial thermal state and perform its analysis in the approximation of small perturbation parameter
and sufficiently low temperature. We also check the subadditivity condition for this system both for
the von Neumann entropy and deformed entropies and check the dependence of mutual information
on the system temperature. Finally, we discuss the applicability of this approach to describe the two
coupled superconducting qubits as harmonic oscillators with limited Hilbert space.
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1. Introduction

The idea of using the Josephson junction to engineer superconducting circuits, where current and

voltage are considered as analogs of the position and momentum in a parametric oscillator [1], is now

employed to study the properties of qubits associated with the state of such circuits. The nonstationary

quantum states of current and voltage in such circuits have been extensively studied [2–5] for more

than two decades, and enormous progress in experimental realization [6, 7] of these systems has been

made, which gave rise to a whole new area of research called quantum information processing. In

the recent works [8–11], the information properties of qubits are studied as the resource for future

quantum technologies. The particular properties of the multiqubit states to be analyzed are entropic

and information inequalities [12, 13], which serve as the basis for quantum information processing.

In this work, we aim at studying the subadditivity condition for von Neumann entropy [14] and

q-entropies [15] of the bipartite quantum system [16–22], on a specific example of two coupled supercon-

ducting circuits [23]. To analyze entropic and information properties of the composite system, we use

the parametric excitation of two circuits realized by an instant change of the qubit coupling. Initially,

we assume the system to be in the thermal state with a corresponding thermal density matrix, which is
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then analyzed in the approximation of small perturbation parameter and sufficiently low temperature.

We also consider the dependence of mutual information on temperature of the system and discuss the

applicability of our approach to describe the two coupled superconducting qubits as harmonic oscillators

with limited Hilbert space.

2. Theoretical Model

We start with a simple model of two interacting harmonic oscillators in the thermal state. As we

would like to consider only the first two levels in each of the circuits, we are working in the limit T → 0.

We discuss this approximation and its applicability more thoroughly in Sec. 6.

Fig. 1. Schematic representation of two superconduct-
ing circuits modeled as harmonic oscillators coupled by
a mutual inductance.

The Hamiltonian of the system of two coupled

resonant circuits shown in Fig. 1 can be written in

the following simple form:

Ĥ = Ĥ1 + Ĥ2 + V̂ , (1)

where first two terms correspond to two indepen-

dent LC circuits, and the third term defines their

coupling

Ĥi =
LiÎ

2
i

2
+

Q̂2
i

2Ci
, V̂ = L12Î1Î2, i = 1, 2.

For convenience and due to the duality between mechanical oscillators and LC-circuits, we introduce

canonical position and momentum operators, which we will be using hereinafter, through the following

change of variables [24]:

x̂j = −LjC
1/2Îj , p̂j = C

−1/2
j Q̂j , [x̂j , p̂k] = i�δjk, j, k = 1, 2.

Using this substitution, we can rewrite Eq. (1) as

Ĥ =
p̂21
2m

+
mω2

1x̂
2
1

2
+

p̂22
2m

+
mω2

2x̂
2
2

2
+ gmx̂1x̂2ω1ω2, (2)

where g = L12(L1L2)
−1/2 is the qubit coupling constant, and ω1,2 are the eigenfrequencies of the circuits.

For simplicity, here and later we assume that m = 1, ω1 = 1, and ω2 = λ.

Next, we get rid of the cross term and diagonalize the Hamiltonian [25]. For this, we apply the

following rotation by an angle φ, using the theorem that a quadratic form is reduced to a diagonal form

by an orthogonal transform (
x1

x2

)
=

(
cosφ sinφ

− sinφ cosφ

)(
x′1
x′2

)
. (3)

After this, we arrive at the Hamiltonian

Ĥ =
p̂21
2

+
p̂22
2

+
cos2 φx̂′1 + sin2 φx̂′22

2
+ cosφ sinφx̂′2x̂

′
1 +

λ2(sin2 φx̂′1 + cos2 φx̂′2)
2

−λ2 sinφ cosφx̂′2x̂
′
1 + gλ(− cosφ sinφx̂′21 + cosφ sinφx̂′22 ) + gλ(cos2 φ− sin2 φ)x̂′2x̂

′
1. (4)
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Equating to zero the cross terms in Eq. (4), we obtain a system of two independent harmonic oscillators

Ĥ =
p̂′

2

1

2
+

Ω2
1x̂

′2
1

2
+

p̂′
2

2

2
+

Ω2
2x̂

′2
2

2
, (5)

where the new resonant frequencies and the rotation angle in the approximation of small angles are

Ω2
1 ≈ 1− 2gλφ+ λ2φ2, Ω2

2 ≈ φ2 + λ2 + 2gλφ, φ ≈ gλ/(λ2 − 1) . (6)

3. Density Matrix

As the oscillators under study are in the thermal state in the low-temperature limit, the density

matrix of the system reduced to the 4×4 subspace reads

ρ =
1

Z(T )

⎛
⎜⎜⎜⎜⎝
exp−E00/T 0 0 0

0 exp−E01/T 0 0

0 0 exp−E10/T 0

0 0 0 exp−E11/T

⎞
⎟⎟⎟⎟⎠ , (7)

where Enm = Ω1(n+ 1/2) +Ω2(m+ 1/2) and Z(T ) = Z1(T )Z2(T ) = [4 sinh(ω1/2T ) sinh(ω2/2T )]
−1. In

order to return to the initial system with two coupled resonant circuits, we should perform the transform,

which decomposes the old eigenstates in the new rotated basis

ρ̃ = U−1ρ U. (8)

In the basis of the harmonic oscillators eigenstates, we denote the coefficients of the transform Unmn′m′

and calculate them using the eigenfunctions of the harmonic oscillators,

Unmn′m′ =
1

π

∫ ∞

−∞
exp

[
−x21

2
− x22

2l2
− x′21

2L2
1

− x′22
2L2

2

]
dx1 dx2√

lL1L2

√
2n2mn!m!

√
2n′2m′n′!m′!

×Hn (x1)Hm (x2/l)Hn′
(
x′1/L1

)
Hm′

(
x′2/L2

)
, (9)

where

l =
√

�/mω =
√

1/λ, ω = λ, L1 =
√

1/Ω1, L2 =
√

1/Ω2,

and Hi are the corresponding Hermite polynomials.

After calculating the matrix elements of the transform Unmn′m′ (see Appendix for the details), we

obtain the final density matrix to work with from Eq. (8), which is shown in Fig. 2 at various temperatures

of the system. One can see that the approximation used is valid only for very low temperatures, below

100 mK, which is the standard one for superconducting qubits. At higher temperatures, the populations

of the higher energy levels become non-negligible, thus, demanding to take into account a larger subspace

than the 4×4 matrix we are discussing here.
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a) b) c)

Fig. 2. Density matrices calculated from Eq. (8) at different temperatures T = 100 mK (a), T = 250 mK (b), and
T = 500 mK (c). Here, the off-diagonal elements are nonzero but not visible due to the scale difference.

4. Calculation of Entropies

Using the density matrix obtained, we can calculate the entropic properties of the system. The main

properties we are interested in are entropies of the bipartite system and its subsystems (single qubits)

and the mutual information, which can be obtained from the subadditivity condition.

The two types of entropies we are discussing here are the von Neumann entropy S = −Tr ρ̃ ln ρ̃ and

the Tsallis entropy, which is equal to the von Neumann entropy in the limit of q → 1,

ST
q = −Tr ρ̃ lnq ρ̃, (10)

where the q logarithm is defined as

lnq>0 ρ =

⎧⎪⎨
⎪⎩
ρq−1 − Î

1− q
, q �= 1,

ln ρ, q = 1.

Since the matrix elements of the density matrix depend on the system temperature, we calculate Eq. (10)

for various temperatures and show the results in Fig. 3. The temperature here and later is given in units

of frequency with respect to the eigenfrequency of qubits ω.

One can see that the q entropies in Fig. 3 are collected in such a way that the entropies with q < 1

are located higher than the von Neumann entropy (q = 1), while the entropies with q > 1 are located

under von Neumann entropy. We explain this behavior as follows. The higher the q value, the higher

the influence of the biggest terms in the distribution on entropy, and the more deterministic the system

behavior. As the main elements of the density matrix are the four diagonal ones, higher q values lead to

lower value of q entropy for the density matrix.

5. Verifying the Subadditivity Condition

To check the subadditivity condition for the bipartite system consisting of two resonant circuits, we

divide the calculated density matrix from Eq. (8) into the density matrices of the subsystems as follows:

ρ̃1 =

(
ρ11 + ρ22 ρ13 + ρ24

ρ31 + ρ42 ρ33 + ρ44

)
, ρ̃2 =

(
ρ11 + ρ33 ρ12 + ρ34

ρ21 + ρ43 ρ22 + ρ44

)
. (11)
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Fig. 3. Dependences of q entropies on temperature cal-
culated from Eq. (10). Figures near the curves corre-
spond to the value of q, and the middle curve is the von
Neumann entropy.

Fig. 4. Mutual information versus temperature. Figures
near the curves correspond to the value of q.

The subadditivity condition for the corresponding q entropies reads

ST
q (ρ̃) ≤ ST

q (ρ̃1) + ST
q (ρ̃2), (12)

and the mutual information is

I = −ST
q (ρ̃) + ST

q (ρ̃1) + ST
q (ρ̃2) ≥ 0. (13)

Using Eq. (13) we calculate the values of mutual information for various temperatures of the system;

see Fig. 4. The fact that the mutual information is positive in the whole temperature range demonstrates

the validness of the subadditivity condition for the system.

6. Applicability of the Approximation

In this section, we discuss the applicability of the used approach to approximate the system of two

harmonic oscillators by two qubits in the limit of low temperature. We calculate the purity parameter

μ = Tr ρ2, first for the reduced density 4×4 matrix and then for the remaining part of the density matrix;

we present the result in Fig. 5 versus the system temperature. Also we present the sum of nondiagonal

elements of the reduced 4×4 matrix to show the region where it is larger that the purity error.

In addition, in Fig. 5 we plot the purity of the density 4×4 matrix versus temperature to show the

applicability of the approach used. One can see that the 4×4 subspace approximation is valid below

T ≈ 0.2, where μ ≈ 1, i.e., the approach used is valid for temperatures up to 100 mK (or 0.2 in relative

units). So, for all the calculations with the reduced density 4×4 matrix, we normalize its elements to

obtain μ = 1.
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a) b)

Fig. 5. Approximation applicability in terms of temperature: The inverse relation (a) of the purity of the 4-level
approximation to the purity of the remaining part of the density matrix (curve 1) and the sum of nondiagonal matrix
elements squared (curve 2). The dependence of the purity of the 4-level approximation (b) on temperature (curve 1)
and the ideal case of μ = 1 (curve 2).

7. Summary and Conclusions

We performed the analysis of a system of two coupled superconducting circuits modeled by two

interacting harmonic oscillators in the low-temperature limit and derived the system density matrix

in the small-perturbation approximation. Further we checked that the calculated density matrix of

the bipartite system satisfies the entropic inequalities for the von Neumann entropy and the Tsallis

entropy and considered the dependence of the mutual information on the system temperature. Finally,

we evaluated the purity parameter of the system and verified the applicability of the elaborated approach

to describe a system of two coupled superconducting qubits as harmonic oscillators with limited Hilbert

space.

In a future paper, we will compare our findings with experimental data and generalize the elaborated

approach for an arbitrary rotation angle φ and for larger number of qubits.
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Appendix

Here, we describe in detail how the matrix elements are calculated.

In the basis of the eigenstates |m,n〉, we denote the coefficients of decomposition Unmn′m′ and calculate

the matrix elements of the Û in the eigenvalues basis of the Hamiltonian (Fock basis).
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For the transition from the old basis to a new one |ek〉 → |ẽk〉, we use the following decomposition:

|ẽk〉 =
∑
m

Ukm |em〉 ; Ukn =

∫ ∞

−∞
Ψ∗

n(x)Ψ̃k(x) dx. (14)

So, for the density matrix we obtain

ρnmn′m′ = 〈nm| ρ̂ |n′m′〉 = 1

Z(T )
〈nm| e−βĤ |n′m′〉 . (15)

In view of the harmonic oscillator eigenfunctions Ψn(x) =
1√

2nn!
√
π
e−x2/2 Ĥn(x), where ω = 1, the

unitary transform matrix has the integral form

Unmn′m′ =
1

π

∫ ∞

−∞
dx1√

2n2mn!m!

dx2√
2n′2m′n′!m′!

exp

(
−x21

2
− x22

2l2

)
exp

(
−Ω1x

′2
1

2
− Ω2x

′2
2

2

)

× 1√
l

1√
L1L2

Hn (x1)Hm

(x2
l

)
Hn′

(
x′1
L1

)
Hm′

(
x′2
L2

)
. (16)

After some algebra, we arrive at

Unmn′m′ =
1

π

∫ ∞

−∞
dx1 dx2√
l
√
L1L2

exp

(
−x21

2
− x22

2l2

)
Hn (x1)√

2n′2m′n′!m′!
Hm (x2/l)√
2n2mn!m!

× exp

[
−(cosφx1 + sinφx2)

2

2
(λ2 sin2 φ+ cos2 φ− 2gλ sinφ cosφ)

−(− sinφx1 + cosφx2)
2

2
(sin2 φ+ λ2 cos2 φ+ 2gλ sinφ cosφ)

]

×Hn′

(
cosφx1 + sinφx2

L1

)
Hm′

(− sinφx1 + cosφx2
L2

)
, (17)

where we use the notation l =
√

�/mω =
√

1/λ, ω = λ, L1 =
√

1/Ω1, L2 =
√

1/Ω2,

Ω2
1 = λ2 sin2 φ+ cos2 φ− 2gλ sinφ cosφ and Ω2

2 = sin2 φ+ λ2 cos2 φ+ 2gλ sinφ cosφ.

In the approximation of small angles (cosφ ≈ 1 and sinφ ≈ φ), the last terms read

Hn′

(
cosφx1 + sinφx2

L1

)
Hm′

(− sinφx1 + cosφx2
L2

)
≈ Hn′

(
x1 + φx2

L1

)
Hm′

(
x2 − φx1

L2

)
,

Ω2
1 ≈ λ2φ2 + 1− 2gλφ, Ω2

2 ≈ φ2 + λ2 + 2gλφ,

where we denote K =
√
lL1L2 ≈ (λ2(λ2φ2 + 1 − 2gλφ)(φ2 + λ2 + 2gλφ))−1/8 and use H0(x) = 1 and

H1(x) = 2x. With these simplifications, we obtain the following expression for the matrix elements:

Unmn′m′ =
1

πK

∫ ∞

−∞
exp

[
−
(
1

2
(Ω1 + φ2Ω2 + 1)x21 + (φΩ1 − φΩ2)x1x2 +

1

2
(φ2Ω1 +Ω2 + λ)x22

)]

×Hn (x1)Hm

(x2
l

)
Hn′

(
x1 + φx2

L1

)
Hm′

(
x2 − φx1

L2

)
dx1√

2n2mn!m!

dx2√
2n′2m′n′!m′!

. (18)

Using this equation, we calculate the matrix elements of the transform and obtain the density matrix

from Eq. (8).

One can find more detailed calculations in [26].

242



Volume 37, Number 3, May, 2016 Journal of Russian Laser Research

References

1. V. V. Dodonov, V. I. Man’ko, and O. V. Man’ko, J. Sov. Laser Res., 10, 413 (1989).

2. O. V. Manko, J. Korean Phys. Soc., 27, 1 (1994).

3. E. O. Kiktenko, A. K. Fedorov, O. V. Man’ko, and V. I. Man’ko, Phys. Rev. A, 91, 042312 (2015).

4. A. V. Dodonov, L. C. Celeri, F. Pascoal, et al., “Photon generation from vacuum in nonstationary

circuit QED,” arXiv:0806.4035 (2008).

5. A. V. Dodonov, J. Phys.: Conf. Ser., 161, 012029 (2009).

6. M. Steffen, M. Ansmann, R. McDermott, et al., Phys. Rev. Lett., 97, 050502 (2006).

7. Y. Shalibo, Y. Rofe, I. Barth, et al., Phys. Rev. Lett., 108, 037701 (2012).

8. T. Fujii, S. Matsuo, N. Hatakenaka, et al., Phys. Rev. B, 84, 174521 (2011).

9. A. V. Dodonov, J. Phys. A: Math. Theor., 47, 285303 (2014).

10. D. S. Veloso and A. V. Dodonov, J. Phys. B: At. Mol. Opt. Phys., 48, 165503 (2015).

11. L. C. Monteiro and A. V. Dodonov, Phys. Lett. A, 380, 1542 (2016).

12. C. E. Shannon, Bell Syst. Tech. J., 27, 379 (1948).

13. A. S. Holevo, Quantum Systems, Channels, Information. A Mathematical Introduction, in: De

Gruyter Studies in Mathematical Physics, Berlin (2012), Series No. 16.

14. J. von Neumann, Mathematische Grundlagen der Quantummechanik, Springer, Berlin (1932).

15. C. Tsallis, “Nonextensive statistical mechanics and thermodynamics: historical background and

present status,” in: S. Abe and Y. Okamoto (Eds.), Nonextensive Statistical Mechanics and Its

Applications, Lecture Notes in Physics, Springer, Berlin (2001), Vol. 560, p. 3.

16. V. N. Chernega and O. V. Man’ko, J. Russ. Laser Res., 35, 27 (2014).

17. V. N. Chernega, O. V. Man’ko, and V. I. Man’ko, Found. Phys., 45, 783 (2015).

18. V. I. Man’ko and L. A. Markovich, J. Russ. Laser Res., 35, 518 (2014).

19. M. A. Man’ko and V. I. Man’ko, Int. J. Quantum Inf., 12, 156006 (2014).

20. M. A. Man’ko and V. I. Man’ko, Phys. Scr., T160, 014030 (2014).

21. M. A. Man’ko and V. I. Man’ko, Entropy, 17, 2876 (2015).

22. V. N. Chernega and O. V. Man’ko, Phys. Scr., 90, 074052 (2015).

23. E. Glushkov, A. Glushkova, and V. I. Man’ko, J. Russ. Laser Res., 36, 448 (2015).

24. A. K. Fedorov, E. O. Kiktenko, O. V. Man’ko, and V. I. Man’ko, Phys. Scr., 90, 55101 (2015).

25. M. S. Abdalla, Nuovo Cimento B, 109, 443 (1994).

26. E. Glushkov, A. Glushkova, and V. I. Man’ko, “Deriving entropic inequalities for two coupled su-

perconducting circuits,” arXiv:1509.04341 (2016).

243


	ENTROPIC INEQUALITIES FOR TWO COUPLED SUPERCONDUCTING CIRCUITS
	1. Introduction
	2. Theoretical Model
	3. Density Matrix
	4. Calculation of Entropies
	5. Verifying the Subadditivity Condition
	6. Applicability of the Approximation
	7. Summary and Conclusions
	Acknowledgments
	Appendix
	References

