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Abstract We consider a parametrically driven system of a qubit coupled to a cavity
taking into account different channels of energy dissipation. We focus on the periodic
modulation of a single parameter of this hybrid system, which is the coupling constant
between the two subsystems. Such amodulation is possiblewithin the superconducting
realization of qubit–cavity coupled systems, characterized by an outstanding degree
of tunability and flexibility. Our major result is that energy dissipation in the cavity can
enhance population of the excited state of the qubit in the steady state, while energy
dissipation in the qubit subsystem can enhance the number of photons generated from
vacuum. We find optimal parameters for the realization of such dissipation-induced
amplification of quantumeffects.Our resultsmight be of importance for the full control
of quantum states of coupled systems as well as for the storage and engineering of
quantum states.
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1 Introduction

Superconducting quantum circuits are characterized by a high degree of tunability
and flexibility [1–6]. In such systems, the populations of superconducting qubits and
microwave resonators can be affected either directly [7–9] or by parametric modu-
lation [4]. This makes it possible to use superconducting Josephson circuits for the
exploration of nonadiabatic quantum electrodynamics phenomena, which are hard to
implement in other systems, see, e.g., Refs. [10–13].

Moreover, the outstanding flexibility of superconducting Josephson circuits is uti-
lized in quantum computation for the construction of parametric gates, which have
certain advantages compared to the more standard approach based on fixed-frequency
qubits with static coupling suffering from cross talks [14]. Instead, one can either
rely on frequency-tunable transmons, which however results in the appearance of new
decoherence channels and frequency crowding [14,15], or on parametrically modu-
lating couplings between different constituent parts of the whole systemwhich has the
advantage of a high degree of selectivity [14,16–19]. Thus, investigation of paramet-
rically driven circuits is of importance for both fundamental science and applications.

In our recent papers [13,20],we studied a coupled systemof a superconductingqubit
coupled to a microwave resonator with a modulated coupling constant between these
two subsystems.We argued that such a system can be used to realize in a nontrivial way
the dynamical Lamb effect [21], which can be treated as parametric qubit excitation
due to the nonadiabatic modulation of its dressing by virtual photons. Moreover, this
effect can be quite strong provided the qubit and the cavity are in resonance. The
effect of energy dissipation on the dynamics of such a system is also highly nontrivial
[20]—quantum effects in the photon subsystem can be enhanced by the finite energy
dissipation in the qubit subsystem.

In the present article we studymore systematically this remarkable phenomenon by
carefully analyzing the steady state of the system,which depends on several controlling
parameters. We show that the effect is rather general—quantum effects in the qubit
subsystem, i.e., the population of the excited state of the qubit due to parametrical
processes can be also enhanced by the finite cavity decay. We then reveal the optimal
parameters to achieve such an enhancement within both channels. Our findings can
be used to provide the full control of the qubit-resonator quantum states.

2 Hamiltonian and Basic Equations

We consider a coupled system consisting of a superconducting qubit and single-mode
quantum resonator. Within the quantum optics framework, the Hamiltonian of this
hybrid system reads as

H(t) = ωa†a + ε jσ
+σ− + G(t)(σ+ + σ−)(a† + a), (1)

123



J Low Temp Phys (2018) 191:365–372 367

where a† and a are secondary quantized photon creation and annihilation operators,
σ+, σ− are Pauli operators acting in the subspace of qubit degrees of freedom, while
G(t) is the interaction constant between qubit and cavity, which is dynamically tun-
able. Dynamical tunability can be achieved using different approaches [22–24]. For
instance, it is possible to use a three-level quantum system (transmon) under coherent
drive, which might behave like an effective two-level system with tunable coupling to
the cavity [24]. Another method is based on two strongly interacting transmons with
hybridized energy levels [23]. The lowest excited level is more weakly coupled to light
due to the symmetry of the total wave function, which becomes purely antisymmetric
and therefore fully decoupled from the photon field in the case of resonance. This
lower excited level is then treated as a first excited state of a logical qubit. By tuning
independently the transmon’s frequencies, it is possible to tune the coupling of the
logical qubit to the microwave tone, while keeping fixed the excitation frequency.

The last term on the right-hand side of Eq. (1), which describes the interaction
between the subsystems, contains the two contributions known as the rotating wave
term, G(t)V1 = G(t)(σ+a + σ−a†), and the counterrotating wave term, G(t)V2 =
G(t)(σ+a†+σ−a). For stationary systems, the counterrotating term can be neglected
near the resonance provided the interaction constant is much smaller than the cavity
frequency. However, under periodic modulation of the interaction constant, it must be
kept; moreover, it can be essential for a correct description of the system’s dynamics
[25–30].

Decoherence effects are accounted for by solvingnumerically theLindblad equation

∂tρ(t) − �[ρ(t)] = −i[H(t), ρ(t)], (2)

where ρ(t) is the density matrix of the coupled qubit and photon subsystems. The
matrix �[ρ] depends on the rates of energy dissipation in the cavity κ , in the qubit γ ,
as well as on the pure dephasing rate γϕ . It is given by

�[ρ] =κ

(
aρa† − 1

2
{a†a, ρ}

)
+ γ

(
σ−ρσ+ − 1

2
{σ+σ−, ρ}

)
+ γϕ

(
σ zρσ z − ρ

)
.

We assume that initially the qubit and the cavity are uncoupled and that both of
them are in their ground states, |↓, 0〉. Then, the periodic modulation of the coupling
constant is turned on. When the qubit and the cavity are in resonance, the effect of
such a modulation is strongest. It takes place when the modulation frequency is twice
the cavity frequency [13,20], leading to parametric resonance. Theoretical analysis of
this particular situation can be significantly simplified by using a separation in fast and
slow degrees of freedom and performing time averaging. This is due to the presence
of two types of oscillations in the dynamics of our system—small-amplitude and fast
oscillationswith the frequencyof the photonfield and large-amplitude oscillationswith
much smaller frequencies of the order of the Rabi frequency. The fast and insignificant
oscillations are eliminated by a time averaging procedure [13,20], making numerical
solution of the master equation much simpler. In this case and in the limit |G(t)| �
ω, the system’s dynamics is controlled by two Fourier components [13,20] defined
as 〈G(t)〉t ≡ p and 〈G(t) exp(−2iωt)〉t ≡ q. We represent p and q as p = gθ ,
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q = g(1 − θ), where 0 ≤ θ ≤ 1. The modulation signal is sign alternating at q > p
(θ < 0.5) and nonsign alternating at q < p (θ > 0.5), while θ = 1/2 corresponds
to the situation when both components are the same and the signal having only these
two components vanishes periodically in time, but does not change its sign. The
parameter p controls the strength of the interaction in the Tavis–Cummings channel,
which conserves the excitation number, while q is responsible for the counterrotating
processes which change the excitation number by ±2 [13,20].

We thus treat the Hamiltonian in the interaction picture with the coupling between
the qubit and photon subsystems given by g[θV1+ (1−θ)V2], which is not dependent
explicitly on time, where V1 = σ+a+σ−a† is the interaction in the Tavis–Cummings
channel and V2 = σ+a† + σ−a is the counterrotating term. We then analyze the
dynamics after sudden switching of the coupling constant from zero to g, the initial
state of the system being |↓, 0〉. We focus on the steady state and address the behavior
of both the population of the qubit’s excited state and the mean number of photons
generated from vacuum in the space of four parameters (g, θ, γ = γϕ, κ). In principle,
γϕ is also an independent parameter. However, we use a fixed constraint γ = γϕ ,
while, according to our results, tuning γϕ independently does not significantly alter
our conclusions as long as the condition γϕ ∼ γ is satisfied.

3 Steady State: Population of the Excited State of the Qubit

In this section, we focus on the steady-state population nq of the excited state of
the qubit, which is achieved in the stationary state after the system’s evolution. We
would like to stress that the qubit is excited parametrically from its ground state by the
counterrotating term of the Hamiltonian. Our aim is to study the influence of energy
dissipation in the photon subsystem on the population of the qubit’s excited state.

Figure 1 shows the color map of the population of the qubit’s excited state nq in
the plane of cavity dissipation rate κ and parameter θ at three different values of qubit
dissipation rate and pure dephasing rate γ = γϕ and at fixed value of coupling constant
amplitude g = 0.05ω. Notice that, for illustrative purposes, we have chosen a rather
high value of g, but our major conclusions are not so sensitive to the ratio g/ω as long
as it remains small, as explained below. The analysis of Fig. 1 as well as the inspection
of similar maps for other values of g/ω leads to the counterintuitive conclusion that
the largest effect of parametric qubit excitation in the steady state is achieved not in the
case of an ideal cavity without losses, but in the cavity with some optimal and nonzero
decay rate κopt, and always at θ = 0. The latter condition implies full domination of
the counterrotating processes over the excitation-number conserving dynamics. The
optimal cavity decay rate is determined by the condition κoptγ ≈ g2, which is deduced
from the analysis of maps at different values of g.

It is also clear from Fig. 1 that the effect of qubit relaxation γ on the quantum
effects in the same subsystem is standard: It leads to the suppression of the population
of the qubit’s excited state.

The fact that nq ismaximumat θ = 0 can be understood by noting that the parameter
q is responsible for the efficiency of counterrotating processes, i.e., for the parametric
excitation of qubit from its ground state (|↓, 0〉 → |↑, 1〉). Therefore, full domination
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Fig. 1 Color map for the population of the qubit’s excited state in steady-state conditions in the plane of
cavity dissipation rate κ and parameter θ at g = 0.05ω and three different values of the qubit’s dissipation
rate γ : γ = 0.01ω (a), γ = 0.05ω (b) and γ = 0.1ω (c); γϕ = γ in all cases (Color figure online)

of counterrotating processes over excitation-number conserving dynamics is achieved
at θ = 0. It is also clear that relaxation in the qubit yields an opposite effect, and hence
nq is highest at γ = 0. However, the effect of relaxation in a cavity is much more
nontrivial. Actually, it creates a new channel of system relaxation from |↑, 1〉 to the
initial state |↓, 0〉 through the intermediate state |↑, 0〉, the latter containing the qubit
in its excited state. Thus, the presence of both relaxation channels (in the qubit and
in the cavity) allows to create a kind of a circle |↓, 0〉 → |↑, 1〉 → |↑, 0〉 → |↓, 0〉,
which leads to the partial trapping of the qubit in its excited state.

4 Steady State: Mean Photon Number

Let us nowanalyze themeanphoton numbernph as a function of controlling parameters
in the steady state, with particular emphasis on the influence of dissipation in the qubit
subsystem.The photons are generated fromvacuumby the counterrotating term,which
is responsible for the simultaneous qubit excitation and photon production.

Figure 2 provides color maps for the mean photon number nph in the steady state
in the plane of qubit dissipation rate γ = γϕ and parameter θ at three different values
of cavity dissipation rate κ and at g = 0.05ω. We see that the evolution of nph
is rather nontrivial. At low κ � g, the maximum nph is achieved at θ = 0.5 and
γ = 0. This regime is, in some sense, normal, since it indicates that the smaller the
energy dissipation, the stronger the quantum effects. In this case, photon production is
dominated by coherent processes V1 and V2 responsible for the transitions in the ladder
of bare states of the form |↓, 0〉 → |↑, 1〉 → |↓, 2〉 → |↑, 3〉 → . . .. Such transitions
lead to the production of photons from vacuum, and the maximum efficiency of this
production is achieved at θ = 0.5, i.e., when V1 and V2 are equally efficient.

Figure 2a also shows that another local maximum of nph does exist at a different
value of θ equal to 1 and at finite γ , the two maxima in the map being connected by
a kind of an arc with locally enhanced nph. As κ grows and approaches g, this local
maximum transforms into a globalmaximum, the transition beingdiscontinuous. Thus,
the enhancement of photon generation from vacuum due to the energy dissipation in
the qubit subsystem starts dominating at nonzero threshold cavity relaxation≈ g. The
analysis of maps at different values of g also puts in evidence that the optimal γopt
which maximizes nph in this regime is also nearly equal to g. The existence of this
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Fig. 2 Color map for the mean photon number in the steady state in the plane of qubit dissipation rate
γ and parameter θ at g = 0.05ω and three different values of cavity dissipation rate κ: κ = 0.01ω (a),
κ = 0.05ω (b) and κ = 0.1ω (c) (Color figure online)

nontrivial regime is linked to the suppression of coherent generation of photons from
vacuum through V1 and V2, which is more efficient at low κ . It is quite natural that
photon decay suppresses such a generation. However, qubit relaxation opens a new
channel for the system excitation. Indeed, V2 is able to excite the system only provided
the qubit is in its ground state. Thus, qubit de-excitation due to the finite γ yields a
new set of transitions of the form |↓, 0〉 → |↑, 1〉 → |↓, 1〉 → |↑, 2〉 → . . ., which
enhance the mean number of photons in the cavity. Such a dynamics is dominated
by V2 and qubit relaxation, while V1 becomes not so important. Therefore, maximum
photon number is achieved at θ = 0.

The maximum of nph at θ = 0.5, which does not exist for nq at the same θ ,
indicates a clear asymmetry between the qubit and the cavity in our system. The
asymmetry originates from the two-level character of the qubit and from the structure
of counterrotating term V2, which can produce arbitrarily large number of excitations
in the cavity, but no more than a single excitation in the qubit.

The inspection of Fig. 2 also proves that the effect of cavity relaxation κ on quantum
effects in the cavity is quite expected, i.e., when it takes place in the same subsystem,
since it leads to the suppression of the mean photon number generated from vacuum.

5 Discussion and Summary

In thepresent article,we studied theoretically a parametrically driven systemconsisting
of a single qubit coupled to a cavity. Periodical parametric modulation of the coupling
constant leads to amplification of counterrotating processes accompanied by qubit
excitationwith simultaneous photon creation fromvacuum.Qubit–cavity systemswith
dynamically tunable couplings can be engineered with superconducting realization
using various schemes.

Our main conclusions are as follows:

(a) Energy dissipation in such a system leads to rather unexpected dynamics—
quantum effects in any of the two subsystems of a hybrid system can be
significantly enhanced due to the energy dissipation in the other subsystem. This
happens because the energy dissipation in such a multilevel system is able to open
new channels of system’s dynamics.
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(b) There exists an optimal nonzero cavity dissipation rate κopt, which maximizes the
population of the qubit’s excited state in the steady state, at a given qubit relaxation
rate γ of the qubit. The maximum population is achieved for a modulation signal,
which enhances counterrotating processes. The relation between κopt, γ and the
maximum of the qubit–cavity coupling constant g is κoptγ ≈ g2.

(c) For the maximummean photon number in the steady state there exist two regimes
at a given cavity relaxation rate κ . In the first case, maximum photon number is
achieved at the qubit relaxation rate γ equal to zero. This situation is realized
at small values of the cavity relaxation rate κ � g. It corresponds to the mod-
ulation signal, which supports equal efficiency of excitation-number conserving
and counterrotating terms. In the second case, the maximum photon number is
achieved at nonzero qubit relaxation rate γopt ≈ g and for the sign-alternating
signal. This unusual regime is realized at relatively large values of the cavity
relaxation rate κ � g. The transition between the two regimes is discontinuous.

(d) The unconventional effect arising from the enhancement of quantum effects in
one of the subsystems by energy dissipation in the other subsystem is definitely
linked to the domination of counterrotating processes, since it always appears in
the domain of parameters of the modulation signal supporting such a domination.

(e) In contrast, the influence of energy dissipation on quantum effects in the same
subsystem is conventional—energy dissipation suppresses such phenomena.

Our results provide deeper insights into the physics of parametrically driven quan-
tum circuits. They might be of importance for dissipative quantum computation as
well as for the storage and protection of quantum states.
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