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Localized patterns in star networks of class-B lasers with optoelectronic feedback
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We analyze how a star network topology shapes the dynamics of coupled CO2 lasers with an intracavity
electro-optic modulator that exhibits bistability. Such a network supports spreading and stationary activation
patterns. In particular, we observe an activation spreading where the activated periphery turns on the center
element, an activated center which drifts the periphery into the active region, and an activation of the whole
system from the passive into the active region. Pinned activation, namely activation localized only in the center
or the peripheral elements, is also found. Similar dynamical behavior has been observed recently in complex
networks of coupled bistable chemical reactions. The current work aims at revealing those phenomena in laser
arrays, giving emphasis to the essential role of the coupling structure in fashioning the overall dynamics.
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I. INTRODUCTION

Solid-state, gas, and semiconductor laser arrays constitute
a wide family of nonlinear coupled systems with complex
dynamic behavior. Although the total light emission from
these arrays may be stable, the emission from individual
elements of an array is often unstable with large amplitude
chaotic pulsations [1–3]. Moreover, the coupled system can
show synchronization and other spatiotemporal phenomena
[4]. The main difference between conventional semiconductor
and solid-state or gas lasing media lies in the value of the
linewidth enhancement factor a, which is 2 � a � 5 for semi-
conductor lasers and a = 0 for solid-state or gas systems [5].
This difference makes solid-state or gas lasers more suitable
in applications where phase locking is required, which is the
case in our current study. Another important difference lies
in the effect of the delay time, which in the case of coupled
solid-state or gas lasers can be neglected, while in coupled
semiconductor lasers it may lead to the appearance of multiple
locked states [6]. In our analysis we neglect the dynamics
of the phase differences between the electric fields, so by
choosing gas lasers we achieve a range of parameters for
phase locking wider than that for semiconductor lasers.

In recent years, there have been many studies concerning
semiconductor laser arrays and the analysis of synchroniza-
tion and chimera states [7–10]. Another rapidly growing field
with significant technological applications that involves net-
works of lasers is the field of neuromorphic photonics [11,12]:
When a laser is in the excitable regime it exhibits spiking
dynamics similar to a biological neuron, but approximately 8
orders of magnitude faster. An integrated network on a chip of
such “laser neurons” could provide a wide range of significant
computing and signal-processing applications. In the present
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work, we focus on gas laser arrays and the formation of
localized stationary patterns of activity. The dynamic behavior
of each laser element is bistable and the coupling between the
elements is local and arises due to the overlap of the electric
fields of each separated beam [2,13]. The theoretical model
we use is originated from numerical and experimental studies
of a CO2 laser with an intracavity electro-optic modulator
that exhibits bistability [14]. The repeated reference to solid-
state lasers is done because a similar problem was revisited
for a Nd:YAG laser with an acousto-optic modulator [15].
However, our model has many similarities to that obtained
by semiconductor lasers with a saturable absorber inside the
cavity [16]. Moreover, bistability was also found in semi-
conductor lasers with strong optical injection [17] and in
semiconductor laser diodes with a saturable absorber [18].

Other classical examples where bistable behavior is en-
countered are dynamical processes in chemical systems
[19,20]. Recently, studies on complex networks of coupled
bistable chemical reactions revealed rich collective dynam-
ics, such as spreading or retreating of an initial activation,
but more interestingly, the formation of localized stationary
patterns dependent on the coupling strength and the degree
distribution of the nodes [21–24]. Beyond the simplified the-
oretical approach, electrochemical experiments [23,24] have
stressed that the coupling topology plays a significant role in
the observed dynamics resulting in a robust pattern formation
mechanism. Therefore, similar findings are expected to be
seen in laser arrays coupled in such a way, thus forming
complex networks.

Here we focus on the simple case of star networks where
each bistable element is connected to a central one, the hub.
This connectivity structure is often found in many natural or
engineered systems that consist of dynamical elements inter-
acting with each other through a common medium. It has also
been used in optically coupled semiconductor lasers [25,26]
where synchronization phenomena were investigated. We
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present an extended numerical analysis that takes advantage
of the simplicity of the star network topology to determine the
conditions required for the formation of localized stationary
patterns. We start our investigation by analyzing the dynamics
and determining the bistable regime for a single laser. In
the bistable regime the active and the passive states of the
laser coexist. Knowing this we explore the dynamics of two
coupled bistable lasers, before we proceed to our main study
for a star network of such elements. This work comments on
the formation mechanism of stationary patterns which—like
in the electrochemical networks—is strongly dependent on the
role of the coupling topology.

II. THE MODEL

The dynamical behavior of the CO2 laser with feedback
can be described by three coupled first-order differential
equations, one for the laser field (E), the second for the
population inversion (G), and the last for the feedback voltage
of the electro-optic modulator (V ). In dimensionless form, the
evolution equations have the following form [14]:

dE

dt
= 1

2
[G − 1 − a sin2(V )]E, (1a)

dG

dt
= γ (P − G − G|E|2), (1b)

dV

dt
= β(B + f |E|2 − V ), (1c)

where |E| is the amplitude of electric field, γ denotes the
population decay time, P denotes the pumping, and a scales
the maximum loss introduced by the modulator. The damping
rate β of the feedback loop is normalized to the cavity decay
rate, B is the bias voltage applied to the modulator amplifier,
and f is the scaling of the feedback gain, i.e., it measures the
relation between the intensity incident on the photodiode and
the voltage delivered by the differential amplifier. In general,
B is used as a control parameter.

In the case of a single laser, the phase of the electric
field is a constant variable in time and has no role in the
system dynamics [27]. Thus, we prefer to work with the
amplitude of the electric field without loss of generality. In this
framework, the system of Eqs. (1) admits the zero-intensity
solution (|E| = 0, G = P , V = B) and the nonzero intensity
solution, which are given in the following parametric form:

P

1 + |E|2 = 1 + a sin2(B + f |E|2), (2a)

G = P

1 + |E|2 ,

V = B + f |E|2. (2b)

Figure 1 illustrates the stability of these fixed points by
studying the bifurcation diagram in the case of high gain
f = −0.6 and using B as the control parameter [14].

For B < 0.3441, the zero-intensity fixed point is unsta-
ble (marked by the dashed line), and the nonzero-intensity
solution is the only attractor in the system (active state). At
B = 0.3441, a subcritical pitchfork bifurcation (PB) takes
place and the zero-intensity fixed point becomes stable. At the
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FIG. 1. High-gain bifurcation diagram. The stationary amplitude
of the laser field |E| is shown as a function of the bias voltage B.
The solid and dashed lines mark the stable and unstable branches,
respectively, while the arrows indicate the hysteresis loop. H de-
notes the Hopf bifurcation point and PB the subcritical pitchfork
bifurcation. The constant value of B = 0.37 that is used in the
following sections has been indicated by the arrow and the red (gray)
line. Other parameters are γ = 0.003 125, P = 1.66, β = 0.0521,
a = 5.8, and f = −0.6. The dotted line denotes a very small regime
of low-amplitude oscillations.

same time, a new unstable fixed point is born which vanishes
for B = 0.3982. In the interval 0.3441 < B < 0.4191 the
system exhibits bistability and a hysteresis loop is observed.
As B increases beyond the value 0.4191, the zero intensity
solution is the only allowed state in the system. In the rest of
our analysis we hold the bias voltage constant and equal to
B = 0.37 in order to achieve a controllable bistable system
that can be prepared either in the passive state 0 < |E| < 0.2
or the active one 0.7 < |E| < 0.9. Moreover, the chosen
value B = 0.37 allows us to avoid transitions from the Hopf
point at B = 0.3982, above which a very small regime of
low-amplitude oscillations exists (marked by the dotted line).
The bifurcation diagrams throughout the manuscript have
been generated using the MATCONT software, a numerical
continuation package for the interactive bifurcation analysis
of dynamical systems [28].

III. TWO COUPLED BISTABLE LASERS

Having defined the single bistable laser system, we proceed
by considering two parallel waveguides of CO2 lasers, each
one with a proper optoelectronic feedback (see Fig. 2). The
mutual interaction lies on the overlap integrals of both lasers
fields inside the crystal with a proper refractive index profile
[13]. The evolution equations for this coupled system have the
following form:

dE

dt
= E

2
[G − 1 − a sin2(V )] + ηEH , (3a)

dEH

dt
= EH

2
[GH − 1 − a sin2(VH )] + ηE, (3b)

where the subscript H denotes the second laser. The equations
for the population inversion (G and GH ) and the feedback
voltage of the modulator (V and VH ) have the same form as
in Eqs. (1); therefore we omit them. The parameter η is the
coupling strength between the two lasers and in general is a
complex parameter (η = ηRe + iηIm). The real part ηRe takes
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FIG. 2. (a) Schematic diagram of the optoelectronic feedback of
two coupled lasers. The optical power emitted by the two lasers is
coupled through the overlap of the electrical fields in a nonlinear
crystal. After a beam splitter, it is detected by a photodiode with
a fixed bandwidth. The electrical output is fed back to each laser
through an amplifier. (b) Topology of a star network where each laser
of the periphery interacts with the rest through a central laser, the
hub, with the same coupling strength.

usually negative values and vanishes only when D � 2w,
where D is the distance between the two beams and w is the
waist of the beam Gaussian portrait. However, it is possible
to have positive coupling values, which we consider here,
by pumping in the middle between the two beams [29]. The
imaginary part ηIm is related to the refractive index and can be
zero for a laser beam of weak intensity, which is the case here.
If we use the polar coordinates E = |E|eiφ , a third equation
for the phase difference of the two lasers is added to Eqs. (3).
However, we can neglect the dynamics of the third variable
since we are working in the phase-locking regime, i.e., the
phase difference is constant and equal to zero (see Fig. 5 in
Appendix A). The dynamics of the system can, therefore, be
described solely by the amplitude of the electric field.

The zero-intensity steady state of the coupled system is
equal to |E| = |EH | = 0, G = GH = P , and V = VH = B,
while the nonzero-intensity steady states of Eqs. (3), are given
in the following parametric form:

P

1 + |E|2 = 1 + a sin2(B + f |E|2) + 2η
|EH |
|E| , (4a)

P

1 + |EH |2 = 1 + a sin2(B + f |EH |2) + 2η
|E|
|EH | . (4b)

Figure 3 shows the stability of the system steady states
as a function of the coupling strength. Figure 3(a) shows the
stationary amplitude of the electric fields in the case where the
system is prepared with the first laser in the passive state and
the second one in the active state. Similarly, Fig. 3(b) shows
the stability of the system when both lasers are prepared in
the active state. In Fig. 3(c) the two previous cases (passive-
active, active-active) are plotted together with the passive-
passive state which corresponds to the black dash-dotted line.
Figure 3(d) shows the stability region for the amplitude of
both lasers in all three cases is shown in the (|E|, |EH |) plane,
with the passive-passive state represented by a solid black
circle. The dashed lines correspond to the unstable solution
branches. From Fig. 3(c) we can see that the passive-passive
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FIG. 3. The stationary amplitude of the laser field versus the
coupling strength. (a) The amplitude of the first laser in the case
where the system is prepared with the first laser located in the
passive state and the second in the active state (passive-active).
(b) The stationary amplitude of the laser field versus the coupling
strength where both the two lasers are located in the active state
(active-active). (c) The stability for all three preparation states of the
system (passive-active, active-active and passive-passive). (d) The
stability region for the amplitude of both lasers in all three cases is
shown in the (|E|, |EH |) plane. Solid, dotted and dash-dotted lines
correspond to stable states while dashed lines correspond to unstable
steady states. SN stands for the saddle-node bifurcation, while PB
for the subcritical pitchfork. B = 0.37 and all other parameters as in
Fig. 1.

state (black dash-dotted line) undergoes a subcritical PB at
η = 0.049 22. The passive-active state [red (gray) line] is
stable up to a critical coupling strength of η = 0.008 819,
where a saddle-node bifurcation (SN) occurs, and the active-
active state (green dotted line) is stable for the whole η

range and coexists with an unstable branch that emerges
at the PB point and runs through the negative axis (not
shown here because η has physical meaning only for positive
values).

As a result of the above stability analysis, when the system
starts at the passive-active state, both lasers jump to the active
state [green (dotted) line] through a SN bifurcation at rather
low coupling strengths of η > 0.008 819. This resembles
the chemical bistable media where an activation front can
propagate, thus activating the passive nodes [23,24]. On the
other hand, when the system is prepared in the passive-passive
state, higher values of η > 0.049 22 are required for the lasers
to jump to the active-active state, and this transition takes
place through a PB bifurcation. This spontaneous activation
arises for the actual nature of the coupled laser system and
is not observed in chemical bistable media [23,24]. Finally,
if the system is prepared in the active-active state (green
dotted line), both lasers will remain there for all values of the
coupling strength.

IV. STAR NETWORK OF COUPLED BISTABLE LASERS

Having analyzed the dynamics of two coupled bistable
lasers, we now focus on a star network configuration and
how it contributes to the formation mechanism of stationary
active patterns. In such a system each element of the periphery
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interacts with the rest through a central element, the hub [see
Fig. 2(b)], and thus Eqs. (3) can be reformulated as follows:

dEj

dt
= Ej

2
[Gj − 1 − a sin2(Vj )] + ηEH , (5a)

dEH

dt
= EH

2
[GH − 1 − a sin2(VH )] + η

N∑
j=1

Ej , (5b)

where j = 1, 2 . . . N counts for the number N of the periph-
eral elements and the subscript H denotes the hub. In polar
coordinates, Eqs. (5) become

d|Ej |
dt

= 1

2
|Ej |[Gj − 1 − a sin2(Vj )] + η|EH | cos(θj ), (6a)

d|EH |
dt

= 1

2
|EH |[GH − 1 − a sin2(VH )]

+ η

N∑
j=1

|Ej | cos(θj ), (6b)

dθj

dt
= −η

[
|EH |
|Ej | sin(θj ) +

N∑
k=1

|Ek|
|EH | sin(θk )

]
, (6c)

where θj = φH − φj are the phase differences between the
electric fields of each node of the periphery and that of the hub.
The equations for the variables Gj , Vj , GH , and VH have the
same form as Eqs. (1) and, again, we omit them. Numerical
integration of Eqs. (6) shows that in the N -η parameter space
the phase differences θj remain constant and equal to zero for
η > 0.002 (see Fig. 6 in Appendix A). Therefore, Eq. (6c) can
be neglected, the cosine terms are equal to 1, and the index j

can be dropped, reducing the star network to a system of two
coupled lasers with asymmetric coupling:

d|E|
dt

= 1

2
|E|[D − 1 − a sin2(V )] + η|EH |, (7a)

d|EH |
dt

= 1

2
|EH |[DH − 1 − a sin2(VH )] + ηN |E|. (7b)

Previous studies with electrochemical systems [23,24,30]
have implemented similar methods for reducing star and tree
networks to chains of asymmetrically coupled nodes. In those
theoretical and experimental studies, it was demonstrated that
such a reduced system could produce all the rich dynamics of
the original network despite its simpler form.

Again, the zero-intensity solution corresponds to
|E| = |EH | = 0, G = GH = P , and V = VH = B, and
the nonzero-intensity solutions are given in the following
parametric form:

P

1 + |E|2 − 1 − a sin2(B + f |E|2) = −2η
|EH |
|E| , (8a)

P

1 + |EH |2 − 1 − a sin2
(
B + f ε2

H

) = −2ηN
|E|
|EH | . (8b)

In the previous section, the system of two symmetrically
coupled lasers has shown that, depending on the preparation
of the coupled system, the lasers’ transition to the active
state occurs through either a saddle-node bifurcation or a
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FIG. 4. Phase diagram in the (η,N ) parametric space. Four
dynamical regions are separated by lines that correspond to the
continuation of the bifurcation points shown in Fig. 3. Orange (gray)
and red (dark gray) lines correspond to saddle-node bifurcation lines,
while the black line corresponds to a pitchfork bifurcation line. In
region I the coupling is weak enough and all three initial conditions
(IC) shown in the inset are stable and consist steady states of the
system. In region II the active periphery drifts the hub to the active
state. In region III the active periphery drifts the hub to the active
state but also the active hub drifts to the periphery in the active state.
In region IV the whole network goes to the active state. In the inset
the inner circle represents the hub and the outer circle represents
the periphery, while the active state is denoted with blue (dark gray)
and the passive state with yellow (light gray). Other parameters are
as in Fig. 3.

subcritical pitchfork bifurcation. In order to locate these tran-
sitions in the star network, we perform a continuation of the
bifurcations in the (η,N ) parameter space as shown in Fig. 4.
The orange (gray) line separating regions I and II corresponds
to the continuation of the SN bifurcation in the case where
the hub starts in the passive state and the periphery in the
active state. Our reduced system with the two asymmetrically
coupled lasers is directed; therefore the passive-active state
stability should be considered for the opposite case as well,
i.e., for the hub in the active state and the periphery in the
passive state. This latter red (dark gray) bifurcation line starts
at the same coupling strength value as the previous bifurcation
line, but has a different behavior and separates the regions
II and III. Finally, the black line separating regions III and
IV corresponds to the continuation of the PB bifurcation that
marks the transition from the passive-passive state to the
active-active state. Note that all three lines are continuous
for the sake of representation. The physically valid points
correspond to N values equal to natural numbers.

These bifurcation lines separate the (η,N ) parameter space
into four distinct regions where the system reaches different
steady states. In region I, any initial condition (periphery
active–hub passive, periphery passive–hub active, or periph-
ery passive–hub passive) remains as it is; i.e., the system
is pinned to its initial preparation. In region II, the active
periphery drifts the passive hub into the active state. The same
occurs in region III where, additionally, the active hub drifts
the passive periphery into the active state. In this region the
activation propagates faster from the active periphery towards
the passive hub than from an active hub towards the periphery.
Finally, in region IV the coupling strength is strong enough
even for the periphery passive–hub passive initial condition to
jump to the active-active state. An example of the described
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dynamical behaviors is shown in the inset of Fig. 4, where
the evolution of three initial conditions (IC) in the (η,N )
parameter space is illustrated. The outer circle represents the
periphery of the system and the inner circle represents the
hub, while light and dark colors correspond to the passive and
active states, respectively.

In close analogy to previous findings in electrochemical
bistable networks [23,24], Fig. 4 shows that the coupling
strength required for a transition to occur in the system’s
dynamics depends on the number of peripheral nodes. The
orange (gray) line separating regions I and II drops with
η because, as the coupling strength increases, a smaller N

size is needed for the periphery to activate the hub (and
vice versa). This results in a shift to lower η values of the
position of the saddle-node bifurcation when N increases [see
Fig. 7(b) in Appendix B]. On the other hand, the number
of periphery nodes is almost [red (dark gray) line has a tiny
slope] independent of the coupling strength required for the
hub to activate the periphery [red (dark gray) line, and see
Fig. 7(c) of Appendix B]. Finally, the black line separating
regions III and IV, which marks the activation of both passive
hub and passive periphery, exists for higher values of the
coupling strength and, similarly to the orange (gray) line,
drops with η [see Fig. 7(d) of Appendix B].

V. CONCLUSIONS

We have shown that star networks of coupled bistable
class-B lasers support activation spreading from the hub to-
wards the peripheral elements and vice versa. Interestingly,
stationary patterns of activation localized on the hub or the
peripheral nodes are also supported, determined by the num-
ber of coupled lasers to the central unit, by the coupling
strength, and by the initial conditions. Similar findings were
previously reported for electrochemical systems. However,
the system considered in the current work has been imple-
mented for coupled CO2 lasers with optoelectronic feedback
keeping the bias voltage applied to the modulator constant and
by considering the coupling strength as a control parameter.
Extensive numerical calculations show that the phases of the
central laser and any peripheral unit lock after a very small
time interval, allowing us to investigate only the steady state
of the system.

In a system size–coupling strength diagram we demon-
strate four distinct regions indicating different dynamical be-
havior. At weak coupling strengths and small network sizes
the initial preparation of the system is pinned and an activa-
tion remains stationary and localized either on the peripheral
elements or on the hub. At weak coupling strengths but larger
network sizes an activation can spread only from the periphery
towards the hub, but not in the opposite direction. Namely,
an activated periphery turns on the center element, but an
activated hub cannot drift the periphery to the active state.
This occurs for moderate values of the coupling strength. In
this third region, activation spreads in both directions (with
different velocities) and an activated periphery turns on the
hub and an activated hub can drift the periphery into the active
state. Finally, an activation of the whole system from the
passive state into the operative region (active state) is shown
for strong couplings.

Despite the obviously different nature of the considered
system from that of the previously studied electrochemical
networks, our findings have essential similarities, indicating
that the network connectivity affects the hosted bistable dy-
namics in an akin fashion. The ability to control the spreading
or the pinning of an activation, and thus the dynamics of
the system from the passive state into the active state and
vice versa, may have multiple technological applications espe-
cially in neuromorphic photonics [11,12], where such treelike
networks can serve as simple hierarchical connectivity struc-
tures. For future studies, it would be worthwhile to explore
if those stationary states can live in the presence of small
phase perturbations, due to spontaneous emission or through
the detuning of each individual laser cavity length. Moreover,
it would be interesting to consider the bias regime where the
system exhibits oscillations, and instead of the CO2 laser, it
would be interesting to study a semiconductor laser diode with
a saturable absorber.
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APPENDIX A: PHASE-LOCKING REGIME

By numerically integrating Eqs. (6) for 100 different initial
conditions of the phase differences θj in the interval [−π, π ],
we have calculated the mean value θ in the η-t parameter
space. The time is in units of the relaxation period TR =
2π/ωR , where ωR = √

kγ‖. Typical values for the cavity loss
and the population decay in a CO2 laser are k = 9.6 × 106

s−1 and γ‖ = 3 × 104 s−1, respectively. The integration has
been done using a fourth-order Runge-Kutta algorithm with
a fixed time step (dt = 0.0001TR). In Fig. 5 we can see that
after a time period equal to 100TR and for η > 0.001 the mean
phase difference 〈θ〉 goes to zero. Figure 5(a) corresponds to
a system prepared in either the passive-passive state or the
active-active state, while Fig. 5(b) refers to the active-passive
(passive-active) initialization state.

In order to investigate the phase-locking regime for η >

0.002 in the whole N -η parameter space, we calculate a phase-
order parameter which is defined as follows [31]:

�q =
〈

1

N
|

N∑
j=1

eθj −(j−1)q |
〉
, (A1)

which is unity for the fully ordered system and zero when
the system is completely disordered. Here, q is the expected
phase difference between oscillators and the averaging is
done over realizations of different initial conditions for θj

in the interval[−π, π ]. In our case the phase differences
converge to zero; hence the q parameter is zero. In Fig. 6
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a b <θ>

50 100 50 100
t / TR t / TR

FIG. 5. The mean value of θ in the η-t space over 100 different
initial conditions of the phase difference in the interval [−π, π ].
(a) Initial preparation of the system in the passive-passive state or
the active-active state. (b) Initial preparation of the system in the
active-passive state or the passive-active state. The red (dark gray)
line indicates the constant value of η = 0.001. Other parameters are
γ = 0.003125, P = 1.66, β = 0.0521, a = 5.8, and f = −0.6.

we have calculated �0 in the η-t parameter space for N = 3
and 5 and N = 7 periphery nodes. As we can see, for η >

0.002 the phase-order parameter �0 ∼ 1. This holds for all
three initial preparations of the system (periphery passive–hub

FIG. 6. �q in the η-t space for N = 3 (top), N = 5 (middle), and
N = 7 (bottom). System initializations are as follows: (a) periphery
passive–hub passive, (b) periphery passive–hub active state, and (c)
periphery active–hub passive. The red (dark gray) line indicates the
constant value of η = 0.002. Other parameters are as in Fig. 5.

passive, periphery passive–hub active, and periphery active–
hub passive).

APPENDIX B: BIFURCATION DIAGRAMS
FOR THE LASER STAR NETWORK

In Fig. 7 we have calculated the stationary amplitude of the
laser field versus the coupling strength for a star network of
varying size. In Figs. 7(a) and 7(c) we plot the stationary am-
plitude of the periphery laser, while the amplitude of the hub
laser is shown in Figs. 7(b) and 7(d). Black (dark gray) corre-
sponds to a star network with three periphery nodes, red (gray)
to a star network with five periphery nodes, and blue (light
gray) to a star network with seven periphery nodes. The state
hub passive–periphery active is shown in Figs. 7(a) and 7(b),
while the opposite state (hub active–periphery passive) is
shown in Figs. 7(c) and 7(d). The hub passive–periphery
passive state and the hub active–periphery active state are
plotted in all four panels of Fig. 7.

In Fig. 7(a) we observe that the active stable region remains
active for any periphery size, while the passive stable region
becomes smaller with increasing periphery size. When the
hub is in the passive state and the periphery is in the active
state, by increasing the number of peripheral nodes the critical
coupling strength for which the hub becomes active decreases
[see Fig. 7(b)]. The reason for this behavior is the η-N
dependence of the periphery on the hub laser. This does
not happen in the opposite case, where the increase of the
peripheral nodes has no significant effect on this transition,
due to the η dependence of the hub laser on the periphery
[see Fig. 7(c)]. Finally, in Fig. 7(a) we see that the active
stable region remains active and independent of the periphery
size.

FIG. 7. The stationary amplitude of the laser field versus the
coupling strength for a star network with three nodes in the periphery
[black (dark gray)], five nodes [red (gray)], and seven nodes [blue
(light gray)]. Panels (a) and (c) show the amplitude of the periphery
laser, and panels (b) and (d) show the amplitude of the hub laser.
The hub passive–periphery passive and the hub active–periphery
active states have been plotted in all four panels. The state hub
passive–periphery active is shown in panels (a) and (b), while the
opposite state (hub active–periphery passive) is shown in panels (c)
and (d). Solid and dashed lines correspond to the stable and unstable
branches, respectively. Other parameters are as in Fig. 5.
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