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a b s t r a c t

Metamaterials, i.e. artificial, man-mademedia designed to achieve properties not available
in natural materials, have been the focus of intense research during the last two decades.
Many properties have been discovered and multiple designs have been devised that lead
to multiple conceptual and practical applications. Superconducting metamaterials made
of superconducting metals have the advantage of ultra low losses, a highly desirable
feature. The additional use of the celebrated Josephson effect and SQUID (superconducting
quantum interference device) configurations enrich the domain of superconducting meta-
materials and produce further specificity and functionality. SQUID-based metamaterials
are both theoretically investigated but also fabricated and analyzed experimentally in
many laboratories and exciting new phenomena have been found both in the classical and
quantum realms. The enticing feature of a SQUID is that it is a unique nonlinear oscillator
that can be actually manipulated through multiple external means. This domain flexibility
is inherited to SQUID-based metamaterials and metasurfaces, i.e. extended units that
contain a large arrangement of SQUIDs in various interaction configurations. Such a unit can
be viewed theoretically as an assembly of weakly coupled nonlinear oscillators and as such
presents a nonlinear dynamics laboratory where numerous, classical as well as quantum
complex, spatio-temporal phenomena may be explored. In this review we focus primarily
on SQUID-based superconducting metamaterials and present basic properties related to
their individual and collective responses to external drives; the work summarized here is
primarily theoretical and computational with nevertheless explicit presentation of recent
experimental works. We start by showing how a SQUID-based system acts as a genuine
metamaterial with right as well as left handed properties, demonstrate that the intrinsic
Josephson nonlinearity leads to wide-band tunability, intrinsic nonlinear as well as flat
band localization. We explore further exciting properties such as multistability and self-
organization and the emergence of counter-intuitive chimera states of selective, partial
organization. We then dwell into the truly quantum regime and explore the interaction
of electromagnetic pulses with superconducting qubit units where the coupling between
the two yields phenomena such as self-induced transparency and superradiance. We thus
attempt to present the rich behavior of coupled superconducting units and point to their
basic properties and practical utility.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Metamaterials & synthetic media: Concepts and perspectives

Metamaterials represent a new class of materials generated by the arrangement of artificial structural elements, designed
to achieve advantageous and/or unusual properties that do not occur in natural materials. In particular, naturally occurring
materials show a limited range of electrical and magnetic properties, thus restricting our ability to manipulate light and
other forms of electromagnetic waves. The functionality of metamaterials, on the other hand, relies on the fact that their
constitutive elements can be engineered so that they may achieve access to a widely expanded range of electromagnetic
properties. Although metamaterials are often associated with negative refraction, this is only one manifestation of their
possible fascinating behaviors; they also demonstrate negative permittivity or permeability, cloaking capabilities [1], perfect
lensing [2], high frequency magnetism [3], classical electromagnetically induced transparency [4–7], as well as dynamic
modulation of Terahertz (THz) radiation [8], among other properties. High-frequency magnetism, in particular, exhibited
by magnetic metamaterials, is considered one of the ‘‘forbidden fruits’’ in the Tree of Knowledge that has been brought
forth by metamaterial research [9]. Their unique properties allow them to form a material base for other functional
devices with tuning and switching capabilities [9–11]. The scientific activity on metamaterials which has exploded since
their first experimental demonstration [12,13], has led to the emergence of a new, rapidly growing interdisciplinary field
of science. This field has currently progressed to the point where physicist, material scientists and engineers are now
pursuing applications, in a frequency region that spans several orders of magnitude, from zero [14–18] to THz [19–25] and
optical [3,26–28]. Historically, themetamaterial concept goes back to 1967 [29], when V. Veselago investigated hypothetical
materials with simultaneously negative permeability and permittivity with respect to their electromagnetic properties. He
showed that simultaneously negative permeability and permittivity result in a negative refractive index for such a medium,
which would bend the light the ‘‘wrong’’ way. The realization of materials with simultaneously negative permeability and
permittivity, required for negative refractive index, had however to wait until the turn of the century, when D. Smith and
his collaborators demonstrated for the first time a structure exhibiting negative refraction in the microwaves [12]. The first
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metamaterial was fabricated by two interpenetrating subsystems, one them providing negative permittivity while the other
negative permeability within the same narrow frequency band. Specifically, an array of thin metallic wires and an array
of metallic rings with a slit (split-ring resonators), which were fabricated following the ‘‘recipies’’ in the seminal works of
J. B. Pendry, provided the negative permeability [30] and the negative permittivity [31], respectively. The wires and the
split-rings act as electrically small resonant ‘‘particles’’, undertaking the role of atoms in natural materials; however, they
are themselves made of conventional materials (highly conductingmetals). Accordingly, a metamaterial represents a higher
level of structural organization of matter, which moreover is man-made.

The key element for the construction of metamaterials has customarily been the split-ring resonator (SRR), which is
a subwavelength ‘‘particle’’; in its simplest version it is just a highly conducting metallic ring with a slit. The SRR and all
its subsequent versions, i.e., U particles, H particles, Ω or Ω−like particles, double and/or multislit SRR molecules, are
resonant particles which effectively act as artificial ‘‘magnetic atoms’’ [32]. The SRRs can be regarded as inductive–resistive–
capacitive (RLC) oscillators, featuring a self-inductance L, a capacitance C , and a resistance R, in an electromagnetic field
whosewavelengthmuch larger than their characteristic dimension. As long as ametamaterial comprising SRRs is concerned,
the wavelength of the electromagnetic field has to be much larger than its unit cell size; then the field really ‘‘sees’’ the
structure as a homogeneous medium at a macroscopic scale and the macroscopic concepts of permittivity and permeability
becomemeaningful. The (effective) homogeneity is fundamental to the metamaterial concept, as it is the ability to structure
a material on a scale less than the wavelength of the electromagnetic field of interest. Although in microwaves this is not a
problem, downsizing the scale of metamaterial elements to access the optical frequency range may be a non-trivial issue.
The advent of metamaterials has led to structures with many different designs of elemental units and geometries, that may
extend to one [33,34], two [13,17], or three dimensions [35]. One of the most investigated metamaterial designs which
does not contain SRRs is the fishnet structure and its versions in two [36], quasi-two [37], and three dimensions [38,39].
However, all these metamaterials have in common that they owe their extraordinary electromagnetic properties more
to their carefully designed and constructed internal structure rather than, e.g., chemical composition of their elements.
Metamaterials comprising of split-rings or some other variant of resonant elements, are inherently discrete; discreteness
effects do not however manifest themselves as long as the metamaterial responds linearly (low-field intensities) and the
homogeneous medium approximation holds. The coupling effects, however, in relatively dense SRR metamaterials are of
paramount importance for a thorough understanding of certain aspects of their behavior, since they introduce spectral
splitting and/or resonant frequency shifts [40–46]. The SRRs are coupled to each other through non-local magnetic and/or
electric dipole–dipole interaction, with relative strength depending on the relative orientation of the SRRs in an array.
However, due to the nature of the interaction, the coupling energy between neighboring SRRs is already much less than the
characteristic energy of the metamaterial; thus in most cases next-nearest and more distant neighbor interactions can be
safely neglected. SRR-basedmetamaterials support a newkind of propagatingwaves, referred to asmagnetoinductivewaves,
formetamaterialswhere themagnetic interaction between its units is dominant. They exhibit phonon-like dispersion curves
and they can transfer energy [33,47], and they have been experimentally investigated both in linear and nonlinear SRR-based
metamaterials [48–50]. It is thus possible to fabricate contact-free data and power transfer devices which make use of the
unique properties of the metamaterial structure, and may function as a frequency-selective communication channel for
devices via their magneto-inductive wave modes [51].

Unfortunately, metamaterials structures comprising of resonant metallic elements revealed unfavorable characteristics
that render themunsuitable formost practical applications. The SRRs, in particular, suffer fromhighOhmic losses at frequen-
cies close to their resonance, where metamaterials acquire their extraordinary properties. Moreover, those properties may
only appear within a very narrow band, that is related to the weak coupling between elements. High losses thus hamper any
substantial progress towards the practical use of thesemetamaterials in novel devices. Many applications are also hampered
by the lack of tuning capabilities and relatively bulky size. However, another breakthrough came with the discovery of
non-resonant, transmission line negative refractive index metamaterials [52,53], which very quickly led to several appli-
cations, at least in the microwaves [54]. Transmission line metamaterials rely on the appropriate combination of inductive–
capacitive (L C) lumped elements into large networks. The tremendous amount of activity in the field of metamaterials since
∼ 2000 has been summarized in various reviews [3,26,28,55–61] and books [11,62–72].

1.2. Nonlinear, superconducting, and active metamaterials

Dynamic tunability is a property that is required for applications [73]; in principle, one should be able to vary the
effective (macroscopic) parameters of a metamaterial in real time, simply by varying an applied field. Tunability provides
the means for fabricating meta-devices with switching capabilities [9,10], among others, and it can be achieved by the
introduction of nonlinearity. Nonlinearity adds new degrees of freedom for metamaterial design that allows for both
tunability andmultistability — another desired property, that may offer altogether new functionalities and electromagnetic
characteristics [74], as well as wide-band negative permeability [75]. It was very soon after the first demonstration of
metamaterials, named at that time as negative refractive index materials, when it became clear that the SRR structure
has considerable potential to enhance nonlinear effects due to the intense electric fields which can be generated in their
slits [76]. Following these ideas, several research groups have demonstrated nonlinear metamaterial units, by filling the SRR
slits with appropriate materials, e.g., with a strongly nonlinear dielectric [77], or with a photo-sensitive semiconductor.
Other approaches have made use of semiconducting materials, e.g., as substrates, on which the actual metamaterial is
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fabricated, that enables modulation of THz transmission by 50% [78]. However, the most convenient method for introducing
nonlinearity in SRR-based metamaterials was proved to be the insertion of nonlinear electronic components into the
SRR slits, e.g., a variable capacitance diode (varactor) [79,80]. The dynamic tunability of a two-dimensional metamaterial
comprising varactor-loaded SRRs by the power of an applied field has been demonstrated experimentally [81]. Both ways
of introducing nonlinearity affect the capacitance C of the SRRs which becomes field-dependent; in the equivalent electrical
circuit picture, in which the SRRs can be regarded as lumped element electrical oscillators, the capacitance C acquires a
voltage dependence and in turn a field-dependent magnetic permeability. Nonlinear transmission line metamaterials are
reviewed in Ref. [82].

Nonlinearity does not however help in the reduction of losses; in nonlinear metamaterials the losses continue to be
a serious problem. The quest for loss compensation in metamaterials is currently following two different pathways: a
‘‘passive’’ one, where the metallic elements are replaced by superconducting ones [58,83], and an ‘‘active’’ one, where
appropriate constituents are added to metallic metamaterials that provide gain through external energy sources. In order to
fabricate both nonlinear and activemetamaterials, gain-providing electronic components such as tunnel (Esaki) diodes [84] or
particular combinations of other gain-providing devices have to be utilized. The Esaki diode, in particular, features a negative
resistance part in its current–voltage characteristics, and therefore can provide both gain and nonlinearity in a conventional
(i.e., metallic) metamaterial. Tunnel diodes which are biased so that they operate at the negative resistance region of their
characteristics may also be employed for the construction of PT −symmetric metamaterials, that rely on balanced gain and
loss [85]. PT −symmetric systems correspond to a new paradigm in the realm of artificial or ‘‘synthetic’’ materials that do
not obey separately the parity (P) and time (T ) symmetries; instead, they do exhibit a combined PT symmetry [86,87]. The
notions of PT −symmetric systems originate for non-Hermitian quantum mechanics [88,89], but they have been recently
extended to optical lattices [90,91]. The use of active components which are incorporated inmetamaterial unit elements has
been actually proposed several years ago [92], and it is currently recognized as a very promising technique of compensating
losses [93]. Low-loss and active negative index metamaterials by incorporating gain material in areas with high local field
have been demonstrated in the optical [94]. Recently, transmission lines with periodically loaded tunnel diodes which have
the negative differential resistance property have been realized and tested as low-loss metamaterials, in which intrinsic
losses are compensated by gain [95]. Moreover, a combination of transistors and a split-ring has been shown to act as a
loss-compensated metamaterial element [96]. In the latter experiment, the quality factor for the combined system exhibits
huge enhancement compared with that measured for the split-ring alone.

The ‘‘passive’’ approach to loss reduction employs superconducting materials, i.e, materials exhibiting absence of dc
resistance below a particular temperature, known as the critical temperature, Tc . A rough classification of the super-
conducting materials is made on the basis of their critical temperature; according to that, there are low-Tc and high-Tc
superconducting materials. The former include primarily elemental and binary compounds, like Niobium (Nb), Niobium
di-Selenide (NbSe2) and more recently Niobium Nitride (NbN), while the most known representatives of the latter are
the superconducting perovskites such as Yttrium–Barium–Copper-Oxide (YBCO). The latter is the most commonly used
perovskite superconductor which typically has a critical temperature Tc ∼ 90 K, well above the boiling point of liquid
Nitrogen. The last few years, there has been an increasing interest in superconducting metamaterials that exploit the zero
resistance property of superconductivity, targeting at severe reduction of losses and the emergence of intrinsic nonlinearities
due to the extreme sensitivity of the superconducting state to external stimuli [10,58]. The direct approach towards
fabrication of superconducting metamaterials relies on the replacement of the metallic split-rings of the conventional SRR-
based metamaterials by superconducting ones. More sophisticated realizations of superconducting metamaterials result
from the replacement of themetallic SRRs by rf SQUIDs (Superconducting QUantum Interference Devices) [97]; those SQUID
metamaterials are discussed below.

Superconducting metamaterials are not however limited to the above mentioned realizations, but they also include
other types of artificial metamaterials; thin superconducting plates have been used in a particular geometrical arrangement
to ‘‘beat the static’’ [98] and make possible a zero frequency metamaterial (dc metamaterial) [14–17,99]. Other types of
superconductingmetamaterials in the form of heterostructures, where superconducting layers alternatewith ferromagnetic
or non-magnetic metallic layers have been shown to exhibit electromagnetically induced transparency [5,6,100], switching
capabilities [101], magnetic cloaking, and concentration [102]. Recently, tunable electromagnetically induced transparency
has been demonstrated in a Niobium Nitride (NbN) terahertz (THz) superconducting metamaterial. An intense THz pulse
is used to induce nonlinearities in the NbN thin film and thereby tune the electromagnetically induced transparency-like
behavior [7]. Furthermore, the dynamic process of parity-time (PT ) symmetry breaking was experimentally demonstrated
in a hybridized metasurface which consists of two coupled resonators made frommetal and NbN [103]. Negative refraction
index metamaterials in the visible spectrum, based on MgB2/SiC composites, have been also realized [104], following
prior theoretical investigations [105]. Moreover, there is substantial evidence for negative refraction index in layered
superconductors above the plasma frequency of the Josephson plasma waves [106], that was theoretically investigated
by several authors [107,108]. Other types of superconducting metamaterials include those made of magnetically active
planar spirals [109], as well as those with rather special (‘‘woodcut’’) geometries [110], two-dimensional arrays of Josephson
junctions [111], aswell as superconducting ‘‘left-handed’’ transmission lines [112,113]. Recently, in a novel one-dimensional
Josephson metamaterial composed of a chain of asymmetric SQUIDs, strong Kerr nonlinearity was demonstrated [114].
Moreover, the Kerr constant was tunable over a wide range, from positive to negative values, by a magnetic flux threading
the SQUIDs.
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1.3. Superconducting metamaterials from zero to Terahertz frequencies

There are several demonstrations of superconducting metamaterial elements which exhibit tunability of their properties
by varying the temperature or the applied magnetic field [22,24,115–119]. We should also mention the theoretical investi-
gations (nonlinear circuit modeling) on a multi-resonant superconducting split-ring resonator [120], and on a ‘‘meta-atom’’
composed of a direct current (dc) SQUID and a superconducting rod attached to it, which exhibits both electric andmagnetic
resonant response [121]. Superconducting split-rings combined into two-dimensional planar arrays form superconducting
metamaterials exhibiting tunability and switching capabilities at microwave and THz frequencies [22–25,116,122–127]. Up
to the time of writing, metamaterials comprising superconducting SRRs employ one of the following geometries:

(i) square SRRs with rectangular cross-section in the double, narrow-side coupled SRR geometry [115,116,128];
(ii) circular, asymmetrically split-rings [117,129,130];
(iii) square SRRs with rectangular cross-section in the single SRR geometry [22];
(iv) electric inductive–capacitive SRRs of two different types [131].
Also, novel metamaterial designs including a ‘‘woodcut’’ type superconducting metamaterial, and niobium-connected

asymmetrically split-ring metamaterials were demonstrated [130]. All these metamaterials were fabricated in the planar
geometry, using either conventional, low−Tc superconductors such as niobium (Nb) and niobium nitride films, or the most
widely usedmember of the high−Tc superconductor family, i.e., the yttrium–barium–copper-oxide (YBCO). The experiments
were performed in microwaves and in the (sub-)THz range (∼ 0.1–2 THz).

All these superconductingmetamaterials share a common feature: they all comprise resonant sub-wavelength supercon-
ducting elements, that exhibit a strong response at one particular frequency, i.e., the resonance frequency, f0. That resonance
frequency is tunable under external fields, such as temperature, constant (dc) and time-periodic (ac) magnetic fields, and
applied current, due to the extreme sensitivity of the superconducting state to external stimuli. (Note however that for some
geometries there can bemore than one strong resonances.) The experimental investigation of the resonances and their ability
for being shifted either to higher or lower frequencies relies onmeasurements of the complex transmission spectra,with dips
signifying the existence of resonances. However, not only the frequency of a resonance but also its quality is of great interest
in prospective applications. That quality is indicated by the depth of the dip of the complex transmission magnitude in the
corresponding transmission spectrum, as well as its width, and quantified by the corresponding quality factor Q . In general,
the quality factor increases considerably as the temperature decreases below the critical one at Tc . Other factors, related to
the geometry and material issues of the superconducting SRRs that comprise the metamaterial, also affect the resonance
frequency f0. Thus, the resonance properties of a metamaterial can be engineered to achieve the desired values, just like
in conventional metamaterials. However, for superconducting metamaterials, the thickness of the superconducting film
seems to be an important parameter, because of the peculiar magnetic properties of superconductors. Using proper design,
it is possible to switch on and off the resonance in superconducting metamaterials in very short time-scales, providing thus
the means of manufacturing devices with fast switching capabilities.

1.4. Summary of earlier work in superconducting metamaterials

In this Subsection, a brief account is given on the progress in the development and applications of superconducting
(both classical and quantum) metamaterials, i.e., metamaterials utilizing either superconducting materials or devices. A
more detailed and extended account is given in two review articles on the subject [58,83], as well as in Chapter 5.5 of
a recently published book [11]. The status of the current research on SQUID metamaterials is discussed separately in the
next Subsection (Section 1.5). In the older of the two review articles [58], the properties of superconductors which are
relevant to superconducting metamaterials, and the advantages of superconducting metamaterials over their normal metal
counterparts are discussed. The author reviews the status of superconductor–ferromagnet composites, dc superconducting
metamaterials, radio frequency (rf) superconducting metamaterials, and superconducting photonic crystals (although the
latter fall outside the domain of what are usually called metamaterials). There is also a brief discussion on SQUID meta-
materials, with reference to the theoretical works in which it was proposed to use an array of rf SQUIDs as a metamaterial
[132,133]. In the second review article [83], a more detailed account on the advantages of superconducting metamaterials
over their normal metal counterparts was given, along with an update on the status of superconducting metamaterials.
Moreover, analogue electromagnetically-induced transparency superconducting metamaterials and superconducting SRR-
based metamaterials are also reviewed. In this review article, there is also a discussion on the first experiments on SQUID
metamaterials [34,134,135] which have confirmed earlier theoretical predictions. However, a lot of experimental and
theoretical work on SQUID metamaterials has been performed after the time of writing of the second review article in
this field. The present review article aims to give an up-to-date and extended account of the theoretical and experimental
work on SQUID metamaterials and reveal their extraordinary nonlinear dynamic properties. SQUID metamaterials provide
a unique testbed for exploring complex spatio-temporal dynamics. In the quantum regime, a prototype model for a ‘‘basic’’
superconducting quantum metamaterial (SCQMM) which has been investigated by several authors is reviewed, which
exhibits novel physical properties. Some of these properties are discussed in detail.

Superconductivity is a macroscopic quantum state of matter which arises from the interaction between electrons and
lattice vibrations; as a result, the electrons form pairs (Cooper pairs) which condense into a single macroscopic ground state.
The latter is the equilibrium thermodynamic state below a transition (critical) temperature Tc . The ground state is separated
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by a temperature-dependent energy gap ∆ from the excited states with quasi-particles (quasi-electrons). As mentioned
earlier, the superconductors are roughly classified into high and low critical temperature ones (high−Tc and low−Tc , respec-
tively). In some circumstances, the Cooper pairs can be described in terms of a single macroscopic quantum wavefunction
Ψ =

√
ns exp[iθs], whose squaredmagnitude is interpreted as the local density of superconducting electrons (ns), andwhose

phase θs is coherent over macroscopic dimensions. Superconductivity exhibits several extraordinary properties, such as
zero dc resistance and the Meissner effect. Importantly, it also exhibits macroscopic quantum phenomena including fluxoid
quantization and the Josephson effects at tunnel (insulating) barriers and weak links. When two superconductors SL and
SR are brought close together and separated by a thin insulating barrier, there can be tunneling of Cooper pairs from one
superconductor to the other. This tunneling produces a supercurrent (Josephson current) between SL and SR, IJ = Ic sin(φJ ),
where Ic is the critical current of the Josephson junction and φJ = φL(t) − φR(t) −

2π
Φ0

∫ SR
SL

A(r, t)dl is the gauge-invariant
Josephson phase, with φL and φR being the phases of the macroscopic quantum wavefunctions of SL and SR, respectively,
A(r, t) the electromagnetic vector potential in the region between SL and SR, and Φ0 =

h
2e ≃ 2.07 × 10−15 Wb the

flux quantum (h is Planck’s constant and e the electron’s charge). Depending on whether φJ is time-dependent or not, the
appearance of the supercurrent IJ is referred to as the ac or the dc Josephson effect.

Superconductors bring three unique advantages to the development of metamaterials in the microwave and sub-THz
frequencies which have been analyzed in Refs. [58,83]. Namely, (i) low losses (one of the key limitations of conventional
metamaterials), (ii) the possibility for higher compactification of superconducting metamaterials compared to other
realizations (superconducting SRRs can be substantially miniaturized while still maintaining their low-loss properties),
and (iii) strong nonlinearities inherent to the superconducting state, which allow for tunability and provide switching
capabilities. The limitations of superconducting metamaterials arise from the need to create and maintain a cryogenic
environment, and to bring signals to and from the surrounding room temperature environment. Quite fortunately, closed-
cycle cryocoolers have become remarkably small, efficient and inexpensive since the discovery of high−Tc superconductors,
so that they are now able to operate for several years unattended, and moreover they can accommodate the heat load
associated with microwave input and output transmission lines to room temperature. Superconductors can also be very
sensitive to variations in temperature, stray magnetic field, or strong rf power which can alter their properties and change
the behavior of the metamaterial. Thus, careful temperature control and high quality magnetic shielding are often required
for reliable performance of superconducting metamaterials.

Superconducting metamaterials exhibit intrinsic nonlinearity because they are typically made up of very compact
elementary units, resulting in strong currents and fields within them. Nonlinearity provides tunability through the variation
of external fields. For example, a connected array of asymmetrically-split Nb resonators shows transmission tunable by
current at sub-THz frequencies due to localized heating and the entrance ofmagnetic vortices [129]. The change in superfluid
density by a change in temperature was demonstrated for a superconducting thin film SRR [128]. Later, it was demonstrated
that the resonant frequency of a Nb SRR changes significantly with the entry of magnetic vortices [116]. Similar results
showing complex tuning with magnetic field were later demonstrated at microwaves using high−Tc superconducting
SRRs [119] and at sub-THz frequencies with similarly designed Nb SRRs [130]. The nonlinearity associated with the resistive
transition of the superconductor was exploited to demonstrate a bolometric detector at sub-THz frequencies using the
collective properties of an asymmetrically split-ring array made of Nb [130]. Thermal tuning has been accomplished at THz
frequencies by varying the temperature in high−Tc (YBCO) metamaterial [24] and NbN electric inductive–capacitive thin
film resonators [124]. Enhancement of thermal tunability was accomplished by decreasing the thickness of the high−Tc
superconducting films which make up square SRRs [136]. Fast nonlinear response can be obtained in superconducting films
in THz time-domain experiments. In such an experiment it was found that intense THz pulses on a NbN metamaterial
could break significant number of Cooper pairs to produce a large quasi-particle density which increases the effective
surface resistance of the film and modulates the depth of the SRR resonance [25,126]. The tuning of high−Tc (YBCO) SRR
metamaterial with variable THz beam intensity has demonstrated that the resonance strength decreases and the resonance
frequency shifts as the intensity is increased [127].

A natural opportunity to create a negative real part of the effectivemagnetic permeabilityµeff is offered by a gyromagnetic
material for frequencies above the ferromagnetic resonance [137]. However, the imaginary part of µeff is quite large near
the resonance and limits the utility of such a metamaterial. A hybrid metamaterial, resulting from the combination of the
gyromagnetic material mentioned earlier with a superconductor can help to reduce losses [138]. A superlattice consisting
of high−Tc superconducting and manganite ferromagnetic layers (YBCO/LSMO) was created and it was shown to produce
a negative index band in the vicinity of the ferromagnetic resonance (∼ 90 GHz) at magnetic fields between 2.9 and
3.1 T [107]. More recently, a metamaterial composed of permanent magnetic ferrite rods and metallic wires was fabricated.
This metamaterial exhibits not only negative refraction but also near-zero refraction, without external magnetic field [139].

The concept of a dc metamaterial operating at very low frequencies that could make up a dc magnetic cloak has been
proposed and investigated in Ref. [14]. The first realization of such ametamaterial, which is based on non-resonant elements,
consists of an array of superconducting plates [15]. The superconducting elements exclude a static magnetic field, and
provide the foundation for the diamagnetic effect,when that field is applied normal to the plates. The strength of the response
depends on the ratio between the dimension of the plates and the lattice spacing. An experimental demonstration of a dc
metamaterial cloak was made using an arrangement of Pb thin film plates [15]. Subsequent theoretical work has refined the
dc magnetic cloak design and suggested that it can be implemented with high−Tc superconducting thin films [16]. It was
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later demonstrated experimentally that a specially designed cylindrical superconductor–ferromagnet bilayer can exactly
cloak uniform static magnetic fields [99].

Superconducting rf metamaterials consisting of two-dimensional Nb spirals developed on quartz substrates show strong
tunability as the transition temperature is approached [109,122]. Rf metamaterials have great potential in applications such
as magnetic resonance imaging devices for non-invasive and high resolution medical imaging [140]. The superconducting rf
metamaterials havemany advantages over their normalmetal counterparts, such as reducing considerably the Ohmic losses,
compact structure, and sensitive tuning of resonances with temperature or rf magnetic field, which makes them promising
for rf applications. Similar, high−Tc rf metamaterials (in which the spirals are made by YBCO) were also fabricated, which
enable higher operating temperatures and greater tunability [141].

The elementary units (i.e., the meta-atoms) in a metamaterial can be combined into meta-molecules so that the
interactions between the meta-atoms can give rise to qualitatively new effects, such as the classical analogue of the
electromagnetically induced transparency (EIT). This effect has been observed in asymmetrically-split ringmetamaterials in
which Fano resonances have beenmeasured as peaks in the transmission spectrum, corresponding tometamaterial induced
transparency [117]. Metamaterials consisting of normal metal–superconductor hybrid meta-molecules can create strong
classical EIT effects [5]. Themeta-molecule consists of a gold (Au) stripwith end caps and two superconducting (Nb) SRRs (the
‘‘bright’’ and the ‘‘dark’’ element, respectively). A tunable transparencywindowwhich could even be switched off completely
by increasing the intensity of the signal propagating through the meta-molecule was demonstrated [5,101]. EIT effects were
also observed in the THz domain utilizing NbN bright and dark resonators to create a transparency window [100]. Further
experiments on all-superconducting (NbN) metamaterials utilizing strongly coupled SRR-superconducting ring elements
showed enhanced slow-light features [6].

A quantum metamaterial is meant to be an artificial optical medium that (a) comprise quantum coherent unit elements
whose parameters can be tailored, (b) the quantum states of (at least some of) these elements can be directly controlled, and
(c) maintain global coherence for sufficiently long time. These properties make a quantum metamaterial a qualitatively
different system [142,143]. Superconducting quantum metamaterials offer nowadays a wide range of prospects from
detecting single microwave photons to quantum birefringence and superradiant phase transitions [83]. They may also play
a role in quantum computing and quantum memories. The last few years, novel superconducting devices, which can be
coupled strongly to external electromagnetic field, can serve as the quantum coherent unit elements of superconducting
quantum metamaterials (SCQMMs). For example, at ultra-low temperatures, superconducting loops containing Josephson
junctions exhibit a discrete energy level spectrum and thus behave in many aspects as quantum meta-atoms. It is very
common to approximate such devices as two-level quantum systems, referred to as superconducting qubits, whose energy
level splitting corresponds to a frequency of the order of a few GHz. The interaction between light and a SCQMM is described
by photons coupling to the artificial two-level systems, i.e., the superconducting qubits. The condition of keeping the energy
of thermal fluctuations kB T , where kB is Boltzmann’s constant and T the temperature, below the energy level splitting h f
of the qubit, where h is Planck’s constant and f the transition frequency, requires temperatures well below 1 K. In the past
few years, research on superconducting qubits has made enormous progress that paves the way towards superconducting
qubit-based quantum metamaterials.

There are several theoretical investigations on the physics of one-dimensional arrays of superconducting qubits coupled
to transmission-line resonators [144–152].Moreover, two-dimensional [153] and three-dimensional [35] SCQMMs based on
Josephson junction networks were proposed. A more extended discussion of the theoretical works on SCQMMs is given in
Section 5.1. Still there is little progress in the experimental realization of such systems. The first SCQMMwas implemented in
2014 [154], and comprises 20 flux qubits arranged in a double chain geometry. In that prototype system, the dispersive shift
of the resonator frequency imposed by the SCQMM was observed. Moreover, the collective resonant coupling of groups of
qubitswith the quantizedmode of a photon fieldwas identified, despite of the relatively large spread of the qubit parameters.
Recently, an experiment on an SCQMM comprising an array of 15 twin flux qubits, was demonstrated [155]. The qubit array is
embedded directly into the central electrode of an Al coplanar waveguide; each qubit contains 5 Josephson junctions, and it
is strongly coupled to the electromagnetic waves propagating through the system. It was observed that in a broad frequency
range, the transmission coefficient through that SCQMM depends periodically on the external magnetic field. Moreover, the
excitation of the qubits in the array leads to a large resonant enhancement of the transmission. We undoubtedly expect to
see more experiments with arrays of superconducting qubits placed in transmission lines or waveguides in the near future.

1.5. SQUID metamaterials

The rf SQUIDs, mentioned above, are highly nonlinear superconducting devices which are long known in the Josephson
community and encompass the Josephson effect [156]. The simplest version of a SQUID is made by a superconducting
ring which is interrupted by a Josephson junction (JJ); the latter is typically formed by two superconductors separated by
a thin insulating (dielectric) layer. The current through the insulating layer and the voltage across the junction are then
determined by the celebrated Josephson relations and crucially affect the electromagnetic behavior of the rf SQUID. SQUIDs
have found numerous technological applications in modern science [157–160]; they are most commonly used as magnetic
field sensors, since they can detect even tiny magnetic fields and measure their intensity with unprecedented precision.
SQUID metamaterials constitute the direct superconducting analogue of conventional (metallic) nonlinear (i.e., varactor
loaded) SRR-basedmagneticmetamaterials, which result from the replacement of the nonlinear SRRs by rf SQUIDs. The latter
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possess inherent nonlinearity due to the Josephson element. Similarly to the conventional (metallic), SRR-based magnetic
metamaterials, the SQUIDs are coupled magnetically to each other through magnetic dipole–dipole interactions. Several
years ago, theoretical investigations have suggested that rf SQUID arrays in one and two dimensions can operate asmagnetic
metamaterials both in the classical [133] and in the quantum regime [132], and they may exhibit negative and/or oscillating
effective magnetic permeability in a particular frequency band which encloses the resonance frequency of individual
SQUIDs. Recent experiments on single rf SQUIDs in awaveguide demonstrated directly the feasibility of constructing SQUID-
based thin-film metasurfaces [118]. Subsequent experiments on one-dimensional, quasi-two-dimensional, and truly two-
dimensional SQUIDmetamaterials have revealed a number of several extraordinary properties such as negative diamagnetic
permeability [34,118], broad-band tunability [34,134], self-induced broad-band transparency [161], dynamic multistability
and switching [135], as well as coherent oscillations [162]. Moreover, nonlinear localization [163] and nonlinear band-
opening (nonlinear transmission) [164], as well as the emergence of dynamic states referred to as chimera states in current
literature [165,166], have been demonstrated numerically in SQUIDmetamaterial models. Those counter-intuitive dynamic
states, which have been discovered numerically in rings of identical phase oscillators [167], are reviewed in Refs. [168,169].
Moreover, numerical investigations on SQUID metamaterials on Lieb lattices which possess a flat band in their frequency
spectrum, reveal the existence of flat-band localized states in the linear regime and the more well-known nonlinearly
localized states in the nonlinear regime [170]. The interaction of an electromagnetic wave with a diluted concentration
of a chain of SQUIDs in a thin film suggests a mechanism for the excitation of magnetization waves along the chain by a
normally incident field [171]. In the linear limit, a two-dimensional array of rf SQUIDs acts as ametasurface that controls the
polarization of an electromagnetic wave [172].

SQUID arrays have been also integrated in larger devices in order to take advantage of their extraordinary proper-
ties; notably, amplification and squeezing of quantum noise has been recently achieved with a tunable SQUID-based
metamaterial [173]. Other important developments demonstrate clearly that SQUID-based metamaterials enable feedback
control of superconducting cubits [174], observation of Casimir effects [175], measurements of nanomechanical motion
below the standard quantum limit [176], and three-wave mixing [177]. At sufficiently low (sub-Kelvin) temperatures,
SQUID metamaterials provide access to the quantum regime, where rf SQUIDs can be manipulated as flux and phase
qubits [178,179]. Recently, the technological advances that led to nano-SQUIDs make possible the fabrication of SQUID
metamaterials at the nanoscale [180].

From the above discussion it should be clear that the field of superconductingmetamaterials, in which superconductivity
plays a substantial role in determining their properties, has expanded substantially. In this review, we focus on the SQUID
metamaterials, that represent an area of the field of superconducting metamaterials, which however has already reached
a level of maturity. We also focus on SCQMMs, and in particular on a prototype model for a chain of charge qubits in a
transmission-line resonator [144]. The SCQMMs are related to the (classical, i.e., not truly quantum) SQUIDmetamaterials in
that they also encompass the Josephson effect. In Section 2, we describe the SQUIDmetamaterial models used for simulating
real systems in current research, we provide the corresponding dispersion of flux waves which can propagate in SQUID
metamaterials, and we present numerical results (along with selected experimental ones), which reveal novel properties
such as wide-band tunability, energy transmission, and multistability. In Section 3, we present and discuss results on
nonlinear localization in SQUID metamaterials, which leads to the generation of states referred to as discrete breathers.
In that Section, we also emphasize the possibility for the emergence of chimera states in SQUID metamaterial models with
either nonlocal or local (nearest-neighbor) coupling between their elements (i.e., the SQUIDs). In Section 4, the dynamical
model for SQUIDmetamaterials on a Lieb lattice is presented, alongwith its full frequency spectrum. The latter contains a flat
band,which allows for the formation of flat-band localized states in the linear regime. The case of nonlinearly localized states,
which can be formed in the nonlinear regime, as well as the transition between the two regimes, is investigated. In Section 5,
we describe a model SCQMMs (a chain of charge qubits in a superconducting transmission-line resonator) and discuss
the possibility for having propagating self-induced transparent or superradiant pulses in that medium. Most importantly,
those pulses induce quantum coherence effects in the medium itself, by exciting population inversion pulses in the qubit
subsystem. Moreover, the speed of the propagating pulses can be controlled by proper engineering of the parameters of the
qubits. The most important points made in this review are summarized in Section 6.

2. SQUID-Based metamaterials I: Models and collective properties

2.1. The rf-SQUID as an artificial magnetic ‘‘atom’’

The Superconducting QUantum Interference Device (SQUID) is currently one of the most important solid-state circuit
elements for superconducting electronics [181]; among many other technological applications [157,159,160], SQUIDs are
used in devices that provide the most sensitive sensors of magnetic fields. Recent advances that led to nano-SQUIDs [180]
makes the fabrication of SQUIDmetamaterials at the nanoscale an interesting possibility. The radio-frequency (rf) SQUID, in
particular, shown schematically in Fig. 1(a), consists of a superconducting ring of self-inductance L interrupted by a Josephson
junction (JJ) [156]. A JJ is made by two superconductors connected through a ‘‘weak link’’, i.e., through a region of weakened
superconductivity. A common type of a JJ is usually fabricated by two superconductors separated by a thin dielectric oxide
layer (insulating barrier) as shown in Fig. 2(a); such a JJ is referred to as a superconductor–insulator–superconductor (SIS)
junction. The fundamental properties of JJs have been established long ago [97,182], and their usage in applications involving
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Fig. 1. (a) Schematic drawing of an rf SQUID in a time-dependent magnetic field H(t) perpendicular to its loop. (b) Equivalent electrical circuit for an rf
SQUID driven by a time-dependent flux sourceΦext (t).

Fig. 2. (a) Schematic of a superconductor–insulator–superconductor (SIS) Josephson junction that consists of two superconducting plates separated by a
thin insulating layer. Cooper pairs can tunnel through the barrier without loss of energy. The order parameters of the left and right superconductors are
|ΨL| exp(iΦL) and |ΨR| exp(iΦR), respectively. (b) The electrical circuit symbol of a Josephson junction. (c) The equivalent circuit of a real Josephson junction
according to the widely used Resistively and Capacitively Shunted (RCSJ) junction model.

superconducting circuits has been thoroughly explored. The observed Josephson effect in such a junction, has been predicted
by Brian D. Josephson in 1962 and it is of great importance in the field of superconductivity as well as in physics. That effect
has been exploited in numerous applications in superconducting electronics, sensors, and high frequency devices. In an
ideal JJ, whose electrical circuit symbol is shown in Fig. 2(b), the (super)current (Josephson current) IJ through the JJ and the
voltage VJ across the JJ are related through the celebrated Josephson relations [156]

VJ (t) =
Φ0

2π
∂φJ (t)
∂t

, IJ (t) = Ic sin[φJ (t)], (1)

where Ic is the critical current of the JJ, Φ0 =
h
2e ≃ 2.07 × 10−15 Wb is the flux quantum, with h and e being the

Planck’s constant and the electron’s charge, respectively, and φJ is the difference of the phases of the order parameters of the
superconductors at left (SL) and right (SR) of the barrier φL and φR, respectively (Fig. 2(a)), i.e., φJ = φL − φR (the Josephson
phase). In the presence of an electromagnetic potential A(r, t), the corresponding gauge-invariant Josephson phase is

φJ (t) = φL(t) − φR(t) −
2π
Φ0

∫ SR

SL

A(r, t)dl. (2)

In an ideal JJ, in which the (super)current is carried solely by Cooper pairs, there is no voltage drop across the barrier for
currents lower than Ic . In practice, however, this can only be true at zero temperature (T = 0), while at finite temperatures
there will always be a quasi-particle current. The latter is carried single-electron excitations (quasi-electrons) resulting from
thermal breaking of Cooper pairs due to the non-zero temperature, and it is subjected to losses. In superconducting circuits,
a real JJ is often considered as the parallel combination of an ideal JJ (described by Eqs. (1)), a shunting capacitance C , due to
the thin insulating layer, and a shunting resistance R, due to quasi-electron tunneling through the insulating barrier, i.e., the
quasi-particle current (Fig. 2(c)). This equivalent electrical circuit for a real JJ is known as the Resistively and Capacitively
Shunted Junction (RCSJ) model, and is widely used for modeling SIS Josephson junctions. The ideal JJ can be also described
as a variable inductor, in a superconducting circuit. From the Josephson relations Eqs. (1) and the current–voltage relation
for an ordinary inductor U = L(∂ I/∂t), it is easily deduced that the Josephson inductance is

L ≡ LJ ≡ LJ (φJ ) =
LJ (0)

cos(φJ )
, LJ (0) =

Φ0

2π Ic
. (3)

Note that Eq. (3) describes a nonlinear inductance, since LJ depends both on the current and the voltage through the
Josephson phase φJ .
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Due to the Josephson element (i.e., the JJ), the rf SQUID is a highly nonlinear oscillator that responds in amanner analogous
to amagnetic ‘‘atom’’, exhibiting strong resonance in a time-varyingmagnetic fieldwith appropriate polarization. Moreover,
it exhibits very rich dynamic behavior, including chaotic effects [183–185] and tunability of its resonance frequency with
external fields [186]. The equivalent electrical circuit for an rf SQUID in a time-dependent magnetic field H(t) threading
perpendicularly its loop, as shown schematically in Fig. 1(b), comprises a flux source Φext (t) in series with an inductance L
and a real JJ described by the RCSJ model.

The dynamic equation for the flux Φ threading the loop of the rf SQUID is obtained by direct application of Kirchhoff’s
laws, as

C
d2Φ
dt2

+
1
R
dΦ
dt

+ Ic sin
(
2π

Φ

Φ0

)
+
Φ −Φext

L
= 0, (4)

where Φ0 is the magnetic flux quantum, Ic is the critical current of the JJ, and t is the temporal variable. Eq. (4) is derived
from the combination of the single-SQUID flux-balance relation

Φ = Φext + L I, (5)

and the expression for the current in the SQUID I provided by the RCSJ model

− I = +C
d2Φ
dt2

+
1
R
dΦ
dt

+ Ic sin
(
2π

Φ

Φ0

)
. (6)

Eq. (4) has been studied extensively for more than three decades, usually under an external flux field of the form

Φext = Φdc +Φac cos(ωt), (7)

i.e., in the presence of a time-independent (constant, dc) and/or a time-dependent (usually sinusoidal) magnetic field of
amplitudeΦac and frequency ω. The orientation of both fields is such that their flux threads the SQUID loop. In the absence
of dc flux, and very low amplitude of the ac field (Φac ≪ Φ0, linear regime), the SQUID exhibits resonant magnetic response
at

ωSQ = ωLC
√
1 + βL, (8)

where

ωLC =
1

√
LC
, βL = 2π

LIc
Φ0
, (9)

is the inductive–capacitive (LC) SQUID frequency and SQUID parameter, respectively. Eq. (4) is formally equivalent to that of
a massive particle in a tilted washboard potential

USQ (Φ) =
1
C

{
(Φ −Φext )2

2L
− EJ cos

(
2π

Φ

Φ0

)}
, (10)

with EJ =
IcΦ0
2π being the Josephson energy. That potential has a number of minimums which depends on the value of βL,

while the location of those minimums varies with the applied dc (bias) flux Φdc . For βL < 1 (non-hysteretic regime) the
potential USQ (Φ) is a corrugated parabola with a single minimum which moves to the right with increasing Φext = Φdc , as
it is shown in Fig. 3(a). For βL > 1 (hysteretic regime) there are more than one minimums, while their number increases
with further increasing βL. A dc fluxΦext = Φdc can move all these minimums as well (Fig. 3(b)) The emergence of more and
more minimums with increasing βL at Φext = Φdc = 0 is illustrated in Fig. 3(c). It should be stressed here that in general
the external fluxΦext is a sum of a dc bias and an ac (time-periodic) term. In that case, the potential USQ (Φ) as a whole rocks
back and forth at the frequency of the external driving ac flux,Ω . Then, in order to determine the possible stationary states
of the SQUID, the principles of minimum energy conditions do not apply; instead, the complete nonlinear dynamic problem
has to be considered.

Normalization.- For an appropriate normalization of the single SQUID equation (4) and the corresponding dynamic equations
for the one- and two-dimensional SQUID metamaterials discussed below, the following relations are used

φ =
Φ

Φ0
, φac =

Φac

Φ0
, φdc =

Φdc

Φ0
, τ = ωLC t, Ω =

ω

ωLC
, i =

I
Ic
, (11)

i.e., frequency and time are normalized to ωLC and its inverse ω−1
LC , respectively, while all the fluxes and currents are

normalized toΦ0 and Ic , respectively. Then, Eq. (4) is written in normalized form as

φ̈ + γ φ̇ + β sin (2πφ)+ φ = φext , (12)

where the overdots denote derivation with respect to the normalized temporal variable τ , φext = φdc + φac cos(Ωτ ) is the
normalized external flux, and

β =
IcL
Φ0

=
βL

2π
, γ =

1
R

√
L
C

(13)
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Fig. 3. The rf SQUID potential USQ from Eq. (10) as a function of the fluxΦ threading the SQUID ring. (a) For a non-hysteretic SQUIDwith βL ≃ 0.75 < 1 and
φdc = Φdc/Φ0 = 0 (black-solid curve); 0.5 (red-dashed curve); 1.0 (green-dotted curve). (b) For a hysteretic SQUIDwith βL ≃ 8 > 1 and φdc = Φdc/Φ0 = 0
(black-solid curve); 0.5 (red-dashed curve); 1.0 (green-dotted curve). (c) For Φdc = 0 and βL = 0.5 < 1 (black-solid curve); 1.5 (red-dashed curve); 2.5
(green-dotted curve).

is the rescaled SQUID parameter and dimensionless loss coefficient, respectively. The term which is proportional to γ in
Eq. (12) actually represents all of the dissipation coupled to the rf SQUID.

The properties of the many variants of the SQUID have been investigated for many years, and they can be found in a
number of review articles [157,160,187–191], textbooks [192], and a Handbook [158,159]. Here we focus on the multista-
bility and the tunability properties of rf SQUIDs, which are important for our later discussions on SQUID metamaterials.
As it was mentioned earlier, the rf SQUID is a nonlinear oscillator which exhibits strong resonant response at a particular
frequency to a sinusoidal (ac) flux field. For low amplitudes of the ac flux field, i.e., in the linear regime, the single-
SQUID resonance frequency is given in Eq. (8); in units of the inductive–capacitive (LC) SQUID frequency, the single-SQUID
resonance frequency is

ΩSQ =
ωSQ

ωLC
=

√
1 + βL. (14)

It was theoretically demonstrated that the SQUID resonance can be tuned within a broad band of frequencies either by a
dc flux bias φdc or by the amplitude of an ac flux field φac . Soon after these predictions, these tunability properties were
confirmed experimentally [34,134]. Further experiments showed that the single-SQUID resonance frequency is also tunable
by the power of the ac flux field, as well as with temperature [161]. In particular, with increasing the amplitude of the ac
flux field from low to high values, the single-SQUID resonance frequency shifts fromΩ = ΩSQ toΩ = 1 (i.e., towards lower
frequencies). Note that for βL = 0.86, a typical value for βL and very close to those obtained in the experiments, the single-
SQUID resonance frequency may vary from Ω = ΩSQ ≃ 1.364 to Ω ≃ 1, that is more than 25% of variation (broad-band
tunability). Moreover, the single-SQUID resonance curve, i.e., the oscillation amplitude of the flux through the SQUID loop
φmax as a function of the driving frequencyΩ , changes dramatically its shape. Such a resonance curve for relatively high ac
flux amplitude φac = 0.06 is shown in Fig. 4(a) [166]. Resonance curves like that are calculated from Eq. (12). As it can be
observed, the curve ‘‘snakes’’ back and forth within a narrow frequency band around the geometrical resonance frequency
Ω ∼ 1. The solid-blue branches of the resonance curve indicate stable solutions, while the dashed-black branches indicate
unstable ones (hereafter referred to as stable and unstable branches, respectively). The stable and unstable branches merge
at particular points (turning points) denoted by SN; at all these points, in which dΩ/dφmax = 0, saddle–node bifurcations
of limit cycles occur. Clearly, by looking at Fig. 4(a) one can identify that there are certain frequency bands in which more
than one simultaneously stable solutions exist. For the sake of illustration, a vertical line has been drawn at Ω = 1.007.
For that frequency, there are five (5) simultaneously stable solutions which are marked by the letters A, B, C,D, E, and four
(4) unstable ones. This can be seen more clearly in the inset of Fig. 4(a) which shows an enlargement of the main figure
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Fig. 4. (a) The snake-like resonance curve for an rf SQUID with βL = 0.86, γ = 0.024, and ac flux amplitude φac = 0.06. The solid-blue and dashed-black
lines correspond to branches of stable and unstable periodic solutions, respectively. Saddle–node bifurcation points are denoted as SN. The vertical thick
gray line corresponds toΩ = 1.007, and the turquoise lines are obtained from Eq. (15). Inset: enlargement around the maximummultistability frequency
Ω = 1.007. (b) Phase portraits for the periodic orbits at the points marked as A − E on the resonance curve and in the inset. (c) A bifurcation diagram for
two coupled identical SQUIDs around the single-SQUIDmaximummultistability frequencyΩ = 1.007. Only stable solutions are shown for clarity. The flux
though the loop of say, the first SQUID, φ1 is plotted at the end of the driving period (see text). The coupling coefficient between the SQUIDs is λ = −0.025
and the other parameters as in (a). At least ten (10) stable states, including chaotic ones, are visible atΩ = 1.007.

aroundΩ = 1.007. Actually, at this frequency the number of possible solutions for the chosen set of simulation parameters
is maximum. Thus for that set of parameters,Ω = 1.007 is themaximummultistability frequency. The corresponding phase
portraits φ(τ ) − φ̇(τ ) of the stable solutions at A − E are shown in Fig. 4(b). Multistability is enhanced (i.e., more solution
branches appear) with increasing the ac flux amplitude φac or lowering the loss coefficient γ .

An approximation to the resonance curve for φmax ≪ 1 is given by [166]

Ω2
= Ω2

SQ ±
φac

φmax
− βLφ

2
max{a1 − φ2

max[a2 − φ2
max(a3 − a4φ2

max)]}, (15)

where a1 = π2/2, a2 = π4/12, a3 = π6/144, and a4 = π8/2880, which implicitly provides φmax as a function of Ω . The
approximate flux amplitude–driving frequency curves from Eq. (15) are shown in Fig. 4(a) in turquoise color; clearly, they
show excellent agreement with the numerical snaking resonance curve for φmax ≲ 0.6. From Eq. (15), the frequency of the
first saddle–node bifurcation (the onewith the lowestφmax) can be calculated accurately. For simplicity, set a2 = a3 = a4 = 0

and a1 = π2/2 into Eq. (15) and then use the condition dΩ/dφmax = 0 to obtain φmax,b =

(
∓φac
π2βL

)1/3
, where φmax,b is the

flux amplitude at which the first saddle–node bifurcation occurs. By substitution of φmax,b into the simplified Eq. (15), we
getΩ2

≡ Ω2
b = Ω2

SQ −
3
2 (π

2βL)1/3φ
2/3
ac , whereΩb is the frequency at which the first saddle–node bifurcation occurs. For the

parameters used in Fig. 4(a), i.e., βL = 0.85 and φac = 0.06, we get φmax,b ≃ 0.192 and Ωb ≃ 1.18 which agree very well
with the numerics.

The dynamic complexity for frequencies around the single-SQUID resonance increases immensely in a SQUID array with
a relatively large number of SQUIDS. Although the coupling between SQUIDs is discussed in detail in the next Subsection
(Section 2.2), we believe it is appropriate to show here the solutions around the single-SQUID multistability frequency for
a system of two coupled SQUIDs (Fig. 4(c)). The two SQUIDs, 1 and 2, are identical, and they are coupled magnetically with
strength λ through their mutual inductances. In Fig. 4(c), the flux through the loop of SQUID 1, φ1, is plotted as a function
of frequency Ω; since the presence of chaotic solutions was expected, the value of φ1 was plotted at the end of fifty (50)
consecutive driving periods T for eachΩ (after the transients have died out). The frequency interval of Fig. 4(c) is the same
as that in the inset of Fig. 4(a). Different colors have been used to help distinguishing between different solution branches;
also, unstable solutions have been omitted for clarity. It can be observed that the number of stable states for the two-SQUID
system ismore than two times larger than the stable states of the single-SQUID. Moreover, apart from the periodic solutions,
a number of (coexisting) chaotic solutions has emerged. The dynamic complexity increases with increasing the number
of SQUIDs N which are coupled together. This effect, which has been described in the past for certain arrays of nonlinear
oscillators is named as attractor crowding [193,194]. It has been argued that the number of stable limit cycles (i.e., periodic
solutions) in such systems scale with the number of oscillators N as (N − 1)!. As a result, their basins of attraction crowd
more andmore tightly in phase space with increasing N . The importance of this effect for the emergence of counterintuitive
collective states in SQUID metamaterials is discussed in Section 3.4.
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Fig. 5. Flux amplitude–frequency (φmax − Ω) curves for an rf SQUID with φdc = 0, γ = 0.002, and (a) β = 0.15; (b) β = 1.27, and current amplitude -
frequency (imax −Ω) curves for an rf SQUID with β = 1.27, γ = 0.002, and (c) φac = 0.01; (d) φac = 0.1. In (a) and (b), the ac field amplitude φac increases
from top to bottom panel: φac = 0.001 (top); φac = 0.01 (middle); φac = 0.1 (bottom). In (c) and (d), the value of the dc flux bias increases from zero in
steps of 0.1 as shown.

In Fig. 5, a number of flux amplitude–frequency and current amplitude–frequency curves are presented to demonstrate
the tunability of the resonance frequency by varying the amplitude of the ac field φac or by varying the dc flux bias φdc . Since
the properties of a SQUID-based metamaterial are primarily determined by the corresponding properties of its elements
(i.e., the individual SQUIDs), the tunability of a single SQUID implies the tunability of the metamaterial itself. In Fig. 5(a)
and (b) the flux amplitude–frequency curves are shown for a SQUID in the non-hysteretic and the hysteretic regime with
βL = 0.15 and 1.27, respectively. The ac field amplitude φac increases from top to bottom panel. In the top panels, the SQUID
is close to the linear regime and the resonance curves are almost symmetric without exhibiting visible hysteresis. A sharp
resonance appears at Ω = ΩSQ as predicted from linear theory. With increasing φac the nonlinearity becomes more and
more appreciable and the resonance moves towards lower frequencies (middle and lower panels). Hysteretic effects are
clearly visible in this regime. The resonance frequency of an rf SQUID can be also tuned by the application of a dc flux bias,
φdc , as shown in Fig. 5(c) and (d). While for φdc = 0 the resonance appears close toΩSQ (although slightly shifted to lower
frequencies due to small nonlinear effects), it moves towards lower frequencies for increasing φdc . Importantly, the variation
of the resonance frequency does not seem to occur continuously but, at least for low φdc , small jumps are clearly observable
due to the inherently quantum nature of the SQUID which is incorporated to some extent into the phenomenological
flux dynamics Eq. (12). The shift of the resonance with a dc flux bias in a single SQUID has been observed in high critical
temperature (high−Tc) rf SQUIDs [195], as well as in low critical temperature (low−Tc) rf SQUIDs [134,161]. In Fig. 5, there
was no attempt to trace all possible branches of the resonance curves for clarity, and also for keeping the current in the
SQUID to values less than the critical one for the JJ, i.e., for I < Ic .

Another illustration of the multistability in an rf SQUID is shown in Fig. 6, which also reveals an anti-resonance effect. In
Fig. 6(a) and (b), the current amplitude–frequency curves are shown in two cases; one close to the weakly nonlinear regime
and the other in the strongly nonlinear regime, respectively. In Fig. 6(a), the curve does not exhibit hysteresis but it is slightly
skewed; the resonance frequency is ΩR ≃ 1.25, slightly lower than the SQUID resonance frequency in the linear regime,
ΩSQ ≃ 1.37 (for βL = 0.88). In Fig. 6(b), the ac field amplitude φac has been increased by an order of magnitude with respect
to that in Fig. 6(a), and thus strongly nonlinear effects become readily apparent. Five (5) stable branches can be identified
in a narrow frequency region around Ω ≃ 1, i.e., around the geometrical (inductive–capacitive, LC) resonance frequency
(unstable branches are not shown). The upper branches, which are extremely sensitive to perturbations, correspond to high
values of the current amplitude imax = Imax/Ic , which leads the JJ of the SQUID to its normal state. The red arrows in Fig. 6,
point at the location of an anti-resonance [196] in the current amplitude–frequency curves. Such an anti-resonance makes
itself apparent as a well-defined dip in those curves, with a minimum that almost reaches zero. The effect of anti-resonance
has been observed in nonlinearly coupled oscillators subjected to a periodic driving force [197] as well as in parametrically
driven nonlinear oscillators [198]. However, it has never before been observed in a single, periodically driven nonlinear
oscillator such as the rf SQUID. In Fig. 6(c) and (d), enlargements of Fig. 6(a) and (b), respectively, are shown around the
anti-resonance frequency. Although the ‘‘resonance’’ region in the strongly nonlinear case has been shifted significantly to
the left as compared with the weakly nonlinear case, the location of the anti-resonance has remained unchanged (even



14 N. Lazarides, G.P. Tsironis / Physics Reports 752 (2018) 1–67

Fig. 6. Current amplitude imax = Imax/Ic–driving frequencyΩ characteristics for an rf SQUID with βL = 0.88, γ = 0.024, φdc = 0, and (a) φac = 0.005; (b)
φac = 0.05. Enlargements of (a) and (b) around the anti-resonance frequency are shown in (c) and (d), respectively. The red arrows point at the location of
the anti-resonance.

Fig. 7. Experimental measurements of the complex transmission magnitude |S21| of an rf SQUID. The resonant response is identified by the red features.
Left: |S21| as a function of frequency Ω and applied dc flux φdc at −80 dBm rf power and temperature T = 6.5 K. Middle: |S21| as a function of frequency
and applied dc flux at three different temperatures, T = 6.5 K, 7.6 K, and 8.3 K, and −80 dBm rf power. Right: |S21| as a function of frequency and rf power
at fixed dc flux, φdc = 1/6 and temperature T = 6.5 K [134].

though φac in Fig. 6(a) and (b) differ by an order of magnitude). The knowledge of the location of anti-resonance(s) as well as
the resonance(s) of an oscillator or a system of oscillators, beyond their theoretical interest, it is of importance in device
applications. Certainly these resonances and anti-resonances have significant implications for the SQUID metamaterials
whose properties are determined by those of their elements (i.e., the individual SQUIDs). When the SQUIDs are in an anti-
resonant state, in which the induced current is zero, they do not absorb energy from the applied field which can thus
transpass the SQUIDmetamaterial almost unaffected. Thus, in such a state, the SQUIDmetamaterial appears to be transparent
to the applied magnetic flux as has been already observed in experiments on two-dimensional SQUID metamaterials [161];
the observed effect has been named as broadband self-induced transparency. Moreover, since the anti-resonance frequency
is not affected by φac , the transparency can be observed even in the strongly nonlinear regime, for which the anti-resonance
frequency lies into the multistability region. In that case, the transparency of the metamaterial may be turned on and off as
it has been already discussed in Ref. [161]. Thus, the concept of the anti-resonance serves for making a connection between
an important SQUID metamaterial property and a fundamental dynamical property of nonlinear oscillators.

The tunability of the SQUID resonance with a dc magnetic field and the temperature has been investigated in recent
experiments [118,134]. Those investigations rely on the measurement of the magnitude of the complex transmission |S21|
as one or more external parameters such as the driving frequency, the dc flux bias, and the temperature vary. Very low
values of |S21| indicate that the SQUID is at resonance. In Fig. 7, the resonant response is identified by the red features. In
the left panel, it is observed that the resonance vary periodically with the applied dc flux, with period Φ0. In the middle
panel of Fig. 7, the effect of the temperature T is revealed; as expected, the tunability bandwidth of the resonance decreases
with increasing temperature. In the right panel of Fig. 7, the variation of the resonance frequency with the applied rf power
is shown. Clearly, three different regimes are observed; for substantial intervals of low and high rf power, the resonance
frequency is approximately constant atΩ ∼ ΩSQ andΩ ∼ 1, respectively, while for intermediate rf powers the resonance
apparently disappears. The latter effect is related to the broad-band self-induced transparency [161].

2.2. SQUID metamaterials models and flux wave dispersion

Conventional (metallic) metamaterials comprise regular arrays of split-ring resonators (SRRs), which are highly conduct-
ing metallic rings with a slit. These structures can become nonlinear with the insertion of electronic devices (e.g., varactors)
into their slits [80,93,199–201]. SQUID metamaterials is the superconducting analogue of those nonlinear conventional
metamaterials that result from the replacement of the varactor-loaded metallic rings by rf SQUIDs as it has been suggested
both in the quantum [132] and the classical [133] regime. Recently, one- and two-dimensional SQUID metamaterials
have been constructed from low critical temperature superconductors which operate close to liquid Helium temperatures
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[34,134,161,162,202,203]. The experimental investigation of these structures has revealed several novel properties such as
negative diamagnetic permeability [34,118], broad-band tunability [34,134], self-induced broad-band transparency [161],
dynamic multistability and switching [135], as well as coherent oscillations [162], among others. Some of these properties,
i.e., the dynamic multistability effect and tunability of the resonance frequency of SQUID metamaterials, have been also
revealed in numerical simulations [164,204]. Moreover, nonlinear localization [163] and the emergence of counter-intuitive
dynamic states referred to as chimera states in current literature [165,166,196] have been demonstrated numerically in
SQUID metamaterial models. The chimera states have been discovered numerically in rings of identical phase oscillators
[167] (see Ref. [168] for a review).

The applied time-dependent magnetic fields induce (super)currents in the SQUID rings through Faraday’s induction law,
which couple the SQUIDs together through dipole–dipole magnetic forces; although weak due to its magnetic nature, that
interaction couples the SQUIDs non-locally since it falls-off as the inverse cube of their center-to-center distance. Consider
a one-dimensional linear array of N identical SQUIDs coupled together magnetically through dipole–dipole forces. The
magnetic fluxΦn threading the nth SQUID loop is [165]

Φn = Φext + L In + L
∑
m̸=n

λ|m−n|Im, (16)

where the indices n and m run from 1 to N , Φext is the external flux in each SQUID, λ|m−n| = M|m−n|/L is the dimensionless
coupling coefficient between the SQUIDs at positions m and n, with M|m−n| being their corresponding mutual inductance,
and

− In = C
d2Φn

dt2
+

1
R
dΦn

dt
+ Ic sin

(
2π
Φn

Φ0

)
(17)

is the current in each SQUID given by the RCSJ model [97], with Φ0 = h/(2e) and Ic being the flux quantum and the critical
current of the JJs, respectively. Recall that within the RCSJ framework, R, C , and L are the resistance, capacitance, and self-
inductance of the SQUIDs’ equivalent circuit, respectively. Combination of Eqs. (16) and (17) gives

C
d2Φn

dt2
+

1
R
dΦn

dt
+

1
L

N∑
m=1

(
Λ̂−1

)
nm
(Φm −Φext)+ Ic sin

(
2π
Φn

Φ0

)
= 0, (18)

where Λ̂−1 is the inverse of the N × N coupling matrix(
Λ̂
)
nm

=

{
1, ifm = n;
λ|m−n| = λ1 |m − n|−3, ifm ̸= n, (19)

with λ1 being the coupling coefficient between nearest-neighboring SQUIDs. The dimensionless coupling strength λ|m−n| =

M|m−n|/L between the SQUIDs at site n and m (normalized center-to-center distance |m − n|), can be calculated either
analytically or numerically. The self-inductance L of the SQUIDs, for example, can be either estimated by an empirically
derived equation [205] or it can be calculated using commercially available software (FastHenry). The mutual inductance
M|m−n| can also be obtained numerically from a FastHenry calculation or it can be approximated using basic expressions
from electromagnetism. The magnetic field generated by a wire loop, which is the approximate geometry of a SQUID, at a
distance greater than its dimensions, is given by the Biot–Savart law as B =

µ0
4π

πr2Iw
d3

, where Iw is the current in the wire, r is
the radius of the loop, and d is the distance from the center of the loop. The mutual inductance between two such (identical)
loops lying on the same plane is given by

M =
Bπr2

Iw
=
µ0

4π
(πr2)2

d3
∝ d−3, (20)

where it is assumed that the field B is constant over the area of each loop, πr2. For square loops of side a, the radius r should
be replaced by a/

√
π . Eq. (20) explains qualitatively the inverse cube distance-dependence of the coupling strength λ|m−n|

between SQUIDs.
In normalized form Eq. (18) reads (n = 1, . . . ,N)

φ̈n + γ φ̇n + β sin (2πφn) =

N∑
m=1

(
Λ̂−1

)
nm
(φext − φm) , (21)

where the relations given in Eq. (11) have been used. Specifically, frequency and time are normalized toωLC = 1/
√
LC and its

inverse ω−1
LC , respectively, the fluxes and currents are normalized to Φ0 and Ic , respectively, the overdots denote derivation

with respect to the normalized temporal variable, τ , φext = φdc + φac cos(Ωτ ), with Ω = ω/ω0 being the normalized
driving frequency, and β , γ are given in Eq. (13). The (magnetoinductive) coupling strength between SQUIDs, which can be
estimated from the experimental parameters in Ref. [206], as well as from recent experiments [34,118], is ratherweak due to
itsmagnetic nature (of the order of 10−2 in normalized units). Since that strength falls-off approximately as the inverse-cube
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of the distance between SQUIDs, a model which takes into account nearest-neighbor coupling only is sufficient for making
reliable predictions. In that case, the coupling matrix assumes the simpler, tridiagonal and symmetric form(

Λ̂
)
nm

=

{1, ifm = n;
λ1 ifm = n ± 1;
0 for any other n, m.

(22)

For λ1 ≪ 1, the inverse of the coupling matrix is approximated to order O(λ21) by(
Λ̂−1

)
nm

=

{1, ifm = n;
−λ1 ifm = n ± 1;
0 for any other n, m.

(23)

Substituting Eq. (23) into Eq. (21), the corresponding dynamic equations for the fluxes through the loops of the SQUIDs of a
locally coupled SQUID metamaterial are obtained as

φ̈n + γ φ̇n + φn + β sin (2πφn) = λ(φn−1 + φn+1) + φeff , (24)

where φeff = (1− 2λ)φext is the ‘‘effective’’ external flux, with φext = φdc +φac cos(Ωτ ) being the normalized external flux.
The effective flux arises due to the nearest-neighbor approximation. For a finite SQUID metamaterial (with N SQUIDs), φeff
is slightly different for the SQUIDs at the end-points of the array; specifically, for those SQUIDs φeff = (1− λ)φext since they
interact with one nearest-neighbor only.

Linearization of Eq. (21) around zero flux with γ = 0 and φext = 0 gives for the infinite system

φ̈n +

[
βL +

(
Λ̂−1

)
nn

]
φn +

∑
m̸=n

(
Λ̂−1

)
nm
φm = 0. (25)

By substitution of the plane-wave trial solution φn = A exp[i(κn − Ωτ )] into Eq. (25), with κ being the wavevector
normalized to d−1 (d is the side of the unit cell, see Fig. 1) , and using∑

m̸=n

(
Λ̂−1

)
nm

eiκ(m−n)
= 2

∞∑
m=1

(
Λ̂−1

)
m
cos(κm), (26)

where m is the ‘‘distance’’ from the main diagonal of Λ̂−1, we get

Ω =

√Ω2
1 + 2

∞∑
m=1

(
Λ̂−1

)
m
cos(κm), (27)

where Ω2
1 = βL +

(
Λ̂−1

)
nn

≃ Ω2
SQ . Note that for the infinite system the diagonal elements of the inverse of the coupling

matrix
(
Λ̂−1

)
nn

have practically the same value which is slightly larger than unity. The frequency Ω1 is very close to the
resonance frequency of individual SQUIDs, ΩSQ . Eq. (27) is the nonlocal frequency dispersion. By substitution of the same
trial solution into Eq. (24), we get the nearest-neighbor frequency dispersion for flux waves, as

Ω ≡ Ωκ =
√
ΩSQ − 2λ cos κ. (28)

Eqs. (27) and (28) result in slightly different frequency dispersion curves as can be observed in the lower panel of Fig. 8 for
two different values of the coupling coefficient λ.

In order to increase the dimensionality and obtain the dynamic equations for the fluxes through the loops of the SQUIDs
arranged in an orthogonal lattice, as shown in the left panel of Fig. 9 inwhich the unit cell is enclosed inside the green-dotted
line, we first write the corresponding flux-balance relations [163,204,207],

Φn,m = Φext + L
[
In,m + λx(In−1,m + In+1,m) + λy(In,m−1 + In,m+1)

]
, (29)

where Φn,m is the flux threading the (n,m)th SQUID of the metamaterial, In,m is the total current induced in the (n,m)th
SQUID of the metamaterial, and λx,y ≡ Mx,y/L are the magnetic coupling coefficients between neighboring SQUIDs, withMx
andMy being the mutual inductances in the x and y directions, (Mx,My < 0). The subscripts n andm run from 1 to Nx and 1
to Ny, respectively. The current In,m is given by the RCSJ model as

− In,m = C
d2Φn,m

dt2
+

1
R
dΦn,m

dt
+ Ic sin

(
2π
Φn,m

Φ0

)
. (30)
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Fig. 8. Upper: Schematic of a one-dimensional SQUID metamaterial. Lower: Frequency dispersion of the SQUID metamaterial with non-local coupling, for
β = 0.1114 (βL ≃ 0.7) and λ0 = −0.05 (blue curve); −0.01 (red curve). The corresponding dispersions for nearest-neighbor (local) coupling are shown as
green and black dotted curves, respectively.

Fig. 9. Left: Schematic drawing of a planar SQUID metamaterial in a time-dependent magnetic field H(t). Right: Density plot and contours of the linear
frequency dispersionΩκ⃗ on the κx − κy plane calculated from Eq. (36), for a two-dimensional SQUID metamaterial with λx = λy = −0.014 and β = 0.15
(βL = 0.7).

Eq. (29) can be inverted to provide the currents as a function of the fluxes, and then it can be combined with Eq. (30) to give
the dynamic equations [163]

C
d2Φn,m

dt2
+

1
R
dΦn,m

dt
+Φn,m + Ic sin

(
2π
Φn,m

Φ0

)
− λx(Φn−1,m +Φn+1,m) − λy(Φn,m−1 +Φn,m+1)

= [1 − 2(λx + λy)]Φext . (31)

In the absence of losses (γ = 0), the earlier equations can be obtained from the Hamiltonian function

H =

∑
n,m

Q 2
n,m

2C
+

∑
n,m

[
1
2L

(Φn,m −Φext )2 − EJ cos
(
2π
Φn,m

Φ0

)]
−

∑
n,m

λx

L
(Φn,m −Φext )(Φn−1,m −Φext )

−

∑
n,m

λy

L
(Φn,m −Φext )(Φn,m−1 −Φext ), (32)
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where

Qn,m = C
dΦn,m

dt
(33)

is the canonical variable conjugate to Φn,m, and represents the charge accumulating across the capacitance of the JJ of
each rf SQUID. The above Hamiltonian function is the weak coupling version of that proposed in the context of quantum
computation [208]. Eqs. (31) can be written in normalized form as

φ̈n,m + γ φ̇n,m + φn,m + β sin(2πφn,m) − λx(φn−1,m + φn+1,m) − λy(φn,m−1 + φn,m+1) = φeff , (34)

where the overdots denote differentiation with respect to the normalized time τ , and

φeff = [1 − 2(λx + λy)]φext; φext = φdc + φac cos(Ωτ ). (35)

The frequency dispersion of linear flux-waves in two-dimensional SQUID metamaterials can be obtained with the standard
procedure, by using plane wave trial solutions into the linearized dynamic equations (34). That procedure results in the
relation

Ω ≡ Ωκ =

√
Ω2

SQ − 2(λx cos κx + λy cos κy), (36)

where κ = (κx, κy) is the normalized wavevector. The components of κ are related to those of the wavevector in physical
units k = (kx, ky) through κx,y = dx,y kx,y with dx and dy being the wavevector component and center-to-center distance
between neighboring SQUIDs in x− and y−direction, respectively. A density plot of the frequency dispersion equations (36)
on the κx − κy plane is shown in the right panel of Fig. 8 for a tetragonal (i.e., dx = dy) SQUID metamaterial. Assuming thus
that the coupling is isotropic, i.e., λx = λy = λ, the maximum and minimum values of the linear frequency band are then
obtained by substituting κ = (κx, κy) = (0, 0) and (π, π ), respectively, into Eq. (36). Thus we get

ωmax =

√
1 + βL + 4|λ|, ωmin =

√
1 + βL − 4|λ|, (37)

that give an approximate bandwidth∆Ω ≃ 4|λ|/ΩSQ .
Note that the dissipation term +

1
R
dΦn,m

dt appearing in Eq. (31) may result from the corresponding Hamilton’s equations
with a time-dependent Hamiltonian [163]

H = e−t/τC
∑
n,m

Q 2
nm

2C
+ e+t/τC

∑
n,m

[
1
2L

(Φnm −Φext )2 − EJ cos
(
2π
Φnm

Φ0

)]
−

∑
n,m

[
λx

L
(Φnm −Φext )(Φn−1,m −Φext ) +

λy

L
(Φnm −Φext )(Φn,m−1 −Φext )

]
, (38)

where EJ ≡
Ic Φ0
2π is the Josephson energy, τC = R C , and

Qnm = e+t/τC C
dΦnm

dt
(39)

is the new canonical variable conjugate to Φnm which represents the generalized charge across the capacitance of the JJ of
each rf SQUID. The Hamiltonian in Eq. (38) is a generalization in the two-dimensional lossy case of that employed in the
context of quantum computation with rf SQUID qubits [208,209].

2.3. Wide-band SQUID metamaterial tunability with dc flux

An rf SQUID metamaterial is shown to have qualitatively the same behavior as a single rf SQUID with regard to dc
flux and temperature tuning. Thus, in close similarity with conventional, metallic metamaterials, rf SQUID metamaterials
acquire their electromagnetic properties from the resonant characteristics of their constitutive elements, i.e., the individual
rf SQUIDs. However, there are also properties of SQUID metamaterials that go beyond those of individual rf SQUIDs; these
emerge through collective interaction of a large number of SQUIDs forming ametamaterial. Numerical simulations using the
SQUIDmetamaterial models presented in the previous sub-section confirm the experimentally observed tunability patterns
with applied dc flux in both one and two dimensions. Here, numerical results for the two-dimensional model are presented;
however, the dc flux tunability patterns for either one- or two-dimensional SQUID metamaterials are very similar. Due to
the weak coupling between SQUIDs, for which the coupling coefficient has been estimated to be of the order of 10−2 in
normalized units [161], the nearest-neighbor coupling between SQUIDs provides reliable results. The normalized equations
for the two-dimensional model equations (34) are [163,204]

φ̈n,m + γ φ̇n,mhin,m + β sin(2πφn,m) − λx(φn−1,m + φn+1,m) − λy(φn,m−1 + φn,m+1) = φeff , (40)
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where φeff = [1− 2(λx +λy)]φext and φext = φdc +φac cos(Ωτ ). The total (symmetrized) energy of the SQUIDmetamaterial,
in units of the Josephson energy EJ , is then

Etot =

∑
n,m

{
π

β

[
φ̇2
n,m + (φn,m − φext )2

]
+ 1 − cos(2πφn,m)

}
−
π

β

∑
n,m

{[
λx(φn,m − φext )(φn−1,m − φext ) + λx(φn+1,m − φext )(φn,m − φext )

+λy(φn,m−1 − φext )(φn,m − φext ) + λy(φn,m − φext )(φn,m+1 − φext )
]}
. (41)

For φext = φdc , the average of that energy over one period T of evolution

⟨Etot⟩T =
1
T

∫ T

0
dτEtot (τ ), (42)

where T = 2π/Ω withΩ being the normalized driving frequency, is constant when the obtained solution is locked to that
driving frequency. In the following, the term ‘‘tunability of the resonance’’ for the SQUID metamaterial is used; however,
the notion of the resonance is rather appropriate for a single SQUID only. The SQUID metamaterial is capable of absorbing
substantial amount of energy for frequencies within its linear frequency band, given by Eq. (36); however, the energy
absorption in that band is far from being uniform. Thus, the term ’’tunability of the resonance’’ for the SQUID metamaterial
refers to that frequency at which the highest absorption of energy occurs (also note that for strong nonlinearities, the SQUID
metamaterial can absorb significant amount of energies in other frequency bands aswell, see next Section). Typical resonance
tunability patterns are shown in Fig. 10 as density plots of ⟨Etot⟩τ as a function of the driving frequency f (in natural units) and
the dc flux biasφdc for several combinations ofφac and λx = λy. Note that the energy background in Fig. 10 has been removed
for clarity. The thick lines with darker color depict the regions of the map with high energy absorption. The parameters
used in the calculations are similar to the experimental ones [34,134,161], although no attempt was made to exactly fit the
observed patterns. These parameter values are consistent with a single-SQUID resonance frequency f ≃ 15 GHz, which is
also used in the calculations and to express the frequency in natural units. In Fig. 10, the ac flux amplitude φac increases from
left to right, while the coupling λx = λy increases from top bottom. The resonance become stronger as wemove from the left
to the right panels, as the nonlinear effects become more and more important with increasing φac . When going from top to
bottom panels, with increasing |λx| = |λy|, a smearing of the resonance is observed, along with the appearance of secondary
resonances. The latter manifest themselves as thin red (dark) curves that are located close to the main shifting pattern, and
they are better seen around half-integer values of the applied dc flux. In order to obtain accurate tunability patterns, a few
hundreds of absorbed energy–frequency curves (one for each φdc) have been calculated. Eqs. (40) are typically integrated
with a fourth-order Runge–Kutta algorithm with constant time-step.

Experimentally, the resonance tunability patterns are obtained by measuring the magnitude of the microwave complex
transmission |S21| (in dBs) of the SQUID metamaterials [34,134]. The samples, which are either quasi-one-dimensional or
two-dimensional, comprise nominally identical elements and they were placed inside coplanar waveguides. When excited
by a weakmicrowave (rf) signal in the presence of a dc flux bias, the resonances of the SQUIDmetamaterials can be detected
as dips in the frequency-dependent |S21|(ω) through the waveguide. The resulting wide-band tunability patterns, shown
in Fig. 11(a) and (b) for quasi-one-dimensional and two-dimensional SQUID metamaterials, respectively, clearly exhibit
a periodicity in the dc flux of Φ0. Note the similarity between these patterns and those obtained for a single SQUID in
Fig. 7. Since the coupling between SQUIDs is weak, their frequency bands are very narrow; however, the red (dark) regions
indicating resonant response are actually thinner that the corresponding frequency bandwidths. This is because the resonant
response is very strong at someparticular frequencies, seemingly close to themaximum frequency of the band. The frequency
of highest and lowest response is obtained for dc flux equal to integer and half-integer multiples of the flux quantum
Φ0, respectively, as it can be seen clearly in Fig. 11(b) which actually contains two patterns for different temperatures,
i.e., for T ≃ 6.5 K and T ≃ 7.9 K. The resonance frequency for the lowest temperature pattern varies with the dc flux
from approximately 15 GHz to 21.5 GHz, providing nearly 30% tunability! The tunability range reduces with increasing
temperature, as can be readily inferred by comparing the data for the two different temperatures. With an increase of
temperature from T ≃ 6.5 K to T ≃ 7.9 K, the tunability range has been almost halved. Note that similar behavior is
observed in the corresponding curves for a single SQUID. The resonant response of the SQUIDmetamaterial is stronger close
to dc fluxes equal to integer multiples of Φ0 (this is visible in both subfigures of Fig. 11). Thus, a ‘‘useful’’ frequency range
can be identified in which the depth of the resonance does not change considerably with φdc . In Fig. 11(a), that range lies
between 13 GHz and 14.5 GHz [34].

Another interesting effect which is clearly visible in the first column of Fig. 10, corresponding to low φac (closer to
the linear limit), is the slight increase of the resonance frequency at φdc = 0 of the SQUID metamaterial with increasing
the magnitude of the coupling coefficients λx = λy. This effect, as well as the shape of the resonant response for φdc
between−1/2 and+1/2 can be understood within an approximate treatment which is valid for low ac field amplitudes φac .
Assume that φn,m ≃ φ for any n,m, i.e., that the SQUIDs are synchronized [204] (note that small deviations from complete
synchronization always appear for finite size SQUIDmetamaterials). Then substitute φn,m = φ, and γ = 0, λx = λy = λ into
Eqs. (40) to get

φ̈ + (1 − 4λ)φ + β sin(2πφ) = (1 − 4λ)(φdc + φac) cos(Ωt). (43)
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Fig. 10. Density plot of the total energy per SQUID, Etot , averaged over a period T of temporal evolution, as a function of the dc flux bias φdc = Φdc/Φ0
and the driving frequency f , for Nx = Ny = 11, βL ≃ 0.7, γ = 0.009, and several combinations of ac flux amplitude φac and coupling coefficients λx = λy
(tetragonal lattice). The ac flux amplitude φac increases from left to right, while the coupling increases from top bottom. First row: λx = λy = −0.01, and
φac = 1/5000 (left); 1/1000 (middle); 1/200 (right). Second row: λx = λy = −0.03, and φac = 1/5000 (left); 1/1000 (middle); 1/200 (right). Third row:
λx = λy = −0.05, and φac = 1/5000 (left); 1/1000 (middle); 1/200 (right). The single-SQUID resonance frequency fSQ used in the calculations is set to
15 GHz.

Fig. 11. Measured magnitude of the complex transmission |S21| as a function of the driving frequency f of a weak ac flux field and the applied dc flux bias
φdc = Φdc/Φ0 for (a) a quasi-one-dimensional rf SQUID metamaterials (in a double-chain configuration with each chain comprising 54 rf SQUIDs) [34];
(b) a two-dimensional (27 × 27) rf SQUID metamaterial [134]. In both figures the red (dark) features indicate regions of reduced transmission, which
corresponds to resonant response. The solid-gray lines in (b) are the calculated single-SQUID resonance frequencies.

In the earlier equation we further use the approximation β sin(2πφ) ≃ βLφ−
2π2

3 βLφ
3, and the ansatz φ = φ0 +φ1 cos(Ωt).

Substituting into Eq. (43), using the rotating wave approximation (RWA), and separating constant from time-dependent
terms, we get

2π2

3
βLφ

3
0 − (1 − 4λ+ βL)φ0 −

3
2
φ0φ

2
1 + (1 − 4λ)φdc = 0,

π2

2
βLφ

3
1 −

{
(1 − 4λ+ βL −Ω2) − 2π2βLφ

2
0

}
φ1 + (1 − 4λ)φac = 0.

(44)

Limiting ourselves to the case φ1 < φ0 ≪ 1, wemay simplify Eqs. (44) by neglecting terms proportional to φ3
1 , φ

3
0 , and φ0φ

1
1 .

Note that we keep the term ∝ φ2
0φ1, i.e., the lowest order coupling term between the two equations. Then, the resulting
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Fig. 12. Normalized frequency at maximum response of the SQUID metamaterial, Ω , as a function of the applied dc flux, φdc , in the presence of a low-
amplitude ac fluxφac . The black circles have been extracted from the numerical data of Fig. 10, while the red solid lines are plotted fromEq. (46). Parameters:
Nx = Ny = 11, φac = 1/5000, γ = 0.009, βL = 0.7, and (a) λx = λy = −0.01; (b) λx = λy = −0.03; (c) λx = λy = −0.05.

equations can be easily solved to give

φ0 =
(1 − 4λ)φdc

(1 − 4λ+ βL)
; φ1 =

(1 − 4λ)φac{
(1 − 4λ+ βL −Ω2) − 2π2βLφ

2
0

} . (45)

Obviously, the ac flux amplitude in the SQUIDs, φ1, attains its maximum value when the expression in the curly brackets in
the denominator of Eq. (45) is zero. Solving that expression forΩ , we get

Ω =

√
(1 − 4λ+ βL) − (2π2βL)

(1 − 4λ)2φ2
dc

(1 − 4λ+ βL)2
, (46)

or, in natural units

f =
fSQ

√
1 + βL

√
(1 − 4λ+ βL) − (2π2βL)

(1 − 4λ)2φ2
dc

(1 − 4λ+ βL)2
, (47)

which corresponds to the ‘‘resonance frequency’’ of the SQUIDmetamaterial itself, with fSQ being the single-SQUID resonance
frequency. This is exactly the frequency for which the resonant response of the SQUID metamaterial is stronger. Moreover,
the dependence of that frequency on the coupling coefficients, which has been experimentally observed and also seen
in the numerical simulations, implies that at that frequency the SQUIDs in the metamaterials exhibit a high degree of
synchronization.

From the actual numerical data of the resonance tunability patterns presented in the left columnof Fig. 10 (lowφac),which
are calculated for increasing magnitude of the coupling coefficients (from top to bottom), the maximum response frequency
has been extracted by simply identifying that frequency at which ⟨Etot⟩τi is maximum. These curves, for λx = λy = λ =

−0.01, −0.03, and −0.05, are shown in Fig. 12(a), (b), and (c), respectively, along with the corresponding ones calculated
from Eq. (47). The simple expression (47), which contains only two parameters, λ and βL, fairly agrees with the simulations
for φac ≪ 1 in a rather wide region of dc fluxes, i.e., from φdc ∼ −0.3 to ∼ +0.3. Within this interval, the resonance
frequency in Fig. 12(a) may change from Ω = 1.12 to 1.32 that makes a variation of ∼ 15%. Similar tunability ranges are
observed in Fig. 12(b) and (c). For larger φdc , the importance of the term ∝ φ3

0 increases and it cannot be neglected for the
solutions of Eqs. (44). However, the agreement between the two curves seems to get better for larger |λ|. By setting φdc = 0
in Eq. (47) we get that f =

fSQ
ΩSQ

√
(Ω2

SQ − 4λ), which, for fSQ = 15 GHz,ΩSQ = 1.304 (βL = 0.7), λ = −0.01, −0.03, −0.05
gives respectively, f = 15.2, 15.5, 15.9 GHz in agreement with the numerical results (Fig. 12). The λ-dependence of the
SQUID metamaterial resonance frequency is weaker in the corresponding one-dimensional case. The resonance shift due to
nonlinearity has been actually observed in a Josephson parametric amplifier driven by fields of different power levels [210],
while the shift with applied dc flux has been observed in high−Tc rf SQUIDs [195] and very recently in a low−Tc rf SQUID
in the linear regime [118]. Systematic measurements on microwave resonators comprising SQUID arrays are presented in
Refs. [210,211].

2.4. Energy transmission in SQUID metamaterials

Conventional SRR-based metamaterials, are capable of transmitting energy through the array of resonators (i.e., the
SRRs), carried by a new kind of waves, the so-called magnetoinductive waves [33,47,51,212–214], which have been actually
observed in one-dimensional SRR arrays with a relatively small number of elements [48,50]. Very much in the same way,
SQUID metamaterials are capable of transmitting energy through magnetoinductive flux waves. In order to investigate the
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Fig. 13. Energy transmission through a one-dimensional SQUID metamaterial with N = 54 SQUIDs. The decimal logarithm of the energy density averaged
over τi = 2000 T time units, log10[⟨En⟩τi ], is mapped on the frequency Ω–site-number n plane for βL = 0.7 (β = 0.1114), λ = −0.01, φac = 0.1, and
γ = 0.009 (upper); γ = 0.004 (middle); γ = 0.001 (lower). The middle and left columns are enlargements of frequency bands around the fundamental
and the subharmonic resonance, respectively, atΩ ≃ 1.302 and 0.43.

transmission of energy through a SQUID metamaterial, a one-dimensional array of SQUIDs comprising N = 54 identical
elements with βL = 0.7 (β = 0.1114) locally coupled to their nearest neighbors, is considered. That array is driven at one
end (say the left end, that with n = 1) by an ac flux field of amplitude φac and frequencyΩ . Then, Eqs. (24) become

φ̈n + γ φ̇n + φn + β sin(2πφn) − λ(φn−1 + φn+1) = (1 − 2λ)φext δn,1, (48)

where the Kroneckers’ delta δn,1 indicates that only the SQUID with n = 1 is driven by the ac field φext = φac cos(Ωτ ). The
total energy in this case is obtained by appropriate modification of Eq. (41), as

Etot =

N∑
n=1

{
π

β

[
φ̇2
n + (φn − φextδn,1)2

]
+ [1 − cos(2πφn)]

}

−
π

β

N∑
n=1

[
λ(φn − φextδn,1)(φn−1 − φextδn,1) + λ(φn+1 − φextδn,1)(φn − φextδn,1)

]
. (49)

The dynamic equations (48) implemented with the boundary conditions φ0 = φN+1 = 0 are integrated in time until
transients are eliminated and the system reaches a stationary state. Typically, 12 000 T time units of time-integration, where
T = 2π/Ω , are sufficient for that purpose. The energy density of the SQUID metamaterial is calculated as a function of
time from Eq. (49) for τi = 2000 T time units more; then, the decimal logarithm of the energy density averaged over
τi, log10[⟨En⟩τi ], is mapped on the frequency Ω–site number n plane and shown in Fig. 13 (high transmission regions are
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indicated with darker colors). In Fig. 13, the quantity log10[⟨En⟩τi ] is shown for three different values of the dissipation
coefficient γ for fixed λ = −0.01 and φac = 0.1. For that value of φac , the nonlinear effects become stronger for lower γ . The
log10[⟨En⟩τi ] map for relatively strong dissipation (γ = 0.009) is shown in the upper panel of Fig. 13; apparently, significant
energy transmission occurs in a narrow band, of the order of ∼ 2λ around the single SQUID resonance frequencyΩSQ ≃ 1.3
(for βL = 0.7). This band almost coincides with the linear band for the one-dimensional SQUID metamaterial. Note that
energy transmission also occurs at other frequencies; e.g., atΩ ∼ 0.43 that corresponds to a subharmonic resonance (1/3).
Subharmonic resonances result from nonlinearity; in this case, nonlinear effects are already significant due to the relatively
high φac for all values of γ . However, for decreasing γ (middle panel), more energy is transmitted both at frequencies in
the linear band and the subharmonic resonance band. In the following we refer to the latter as the nonlinear band, since
it results from purely nonlinear effects. With further decrease of γ (lower panel), the transmitted energy in these two
bands becomes more significant. The comparison can be made more clear by looking at the panels in the middle and right
columns of Fig. 13, which show enlarged regions of the corresponding panels in the left column. The enlargement around
the linear band (middle column) clearly reveals the increase of the transmitted energy with decreasing γ . For frequencies in
the subharmonic nonlinear band, the SQUIDmetamaterial becomes transparent; that type of self-induced transparency due
to nonlinearity is a robust effect as can be seen in Fig. 13 (right column panels), in which the loss coefficient has been varied
by almost an order of magnitude. Moreover, in the case of very low losses (γ = 0.001) the linear band splits into two bands,
in which significant energy transmission occurs. Of those bands, the one at lower frequencies is also a nonlinear band; that
phenomenon of energy transmission in the gap of the linear band(s) is known as supratransmission [215]. In the density plots
of Fig. 13, the upper boundary is a reflecting one, which allows for the formation of stationary flux wave states in the SQUID
metamaterial. However, similar calculations performed with a totally absorbing boundary give practically identical results.

In ac driven SQUID metamaterials, the significance of nonlinear effects depends both on γ and φac . For fixed, low γ
and φac ≪ 1, the dynamics is essentially close to be linear, and consequently the energy transmission through a SQUID
metamaterial is limited to frequencies within the linear band. The strength of nonlinear effects increases, however, with
increasing φac , resulting in the opening of nonlinear energy transmission bands just as in the case in which γ is varied. In
Fig. 14, maps of log10[⟨En⟩τi ] are shown for a SQUID metamaterial with βL = 8 (note that with that choice of βL the SQUIDs
are hysteretic). For each of Fig. 14(a)–(d), enlargements of the frequency bands around the L C frequency (Ω = 1) andΩSQ
are shown in the panels of themiddle and right columns, respectively. For low ac field amplitude φac (Fig. 14(a)), a significant
amount of energy is transmitted through around ΩSQ = 3, as indicated by the orange vertical line that is clearly visible in
the left panel which corresponds to the linear band. With increasing φac , nonlinearity starts becoming important, and the
indications of nonlinear transmission are clearly visible in Fig. 14(b). Although on a large scale it appears as a widening of the
linear band, a closer look (right panel) shows that there are actually two distinct bands; the linear band, and a second band
which emerges at frequencies below it. Both the linear and the nonlinear bands have approximately the same width. In the
middle panel, a faint orange vertical line indicates that a small amount of energy is also transmitted through the array at the
L C frequency. With further increasing φac (Fig. 14(c)), the distance separating the nonlinear from the linear band increases;
specifically, while the linear band remains at frequencies aroundΩSQ , the nonlinear band shifts to lower frequencies due to
nonlinearity. In this case, the energy transmitted at the L C frequency also becomes significant (middle panel). In Fig. 14(d),
the ac field amplitude has been increased to φac = 0.2, where the nonlinearity dominates. While the two main bands still
persist (with the nonlinear band being shifted to even lower frequencies), more, narrower bands seem to appear, while the
energy transmission atΩ ≃ 1 becomes even more significant.

For very low φac (φdc = 0), Eqs. (48) can be linearized to

φ̈n + γ φ̇n +Ω2
SQφn − λ(φn−1 + φn+1) = φ̄ac cos(Ωτ ) δn,1, (50)

where φ̄ac = (1− 2λ)φac . If we further neglect the loss term, Eqs. (50) can be solved exactly in closed form for anyΩ and for
any finite even N , where N is the total number of SQUIDs in the one-dimensional metamaterial. By substitution of the trial
solution φn = qn cos(Ωτ ) into Eqs. (50) and after some rearrangement we get

sqn−1 + qn + sqn+1 = κ0 δn,1, (51)

where

s = −
λ

Ω2
SQ −Ω2

, κ0 =
φ̄ac

Ω2
SQ −Ω2

, (52)

or, in matrix form

q = κ0 Ŝ−1E1, (53)

where q and E1 are N−dimensional vectors with components qn and δn,1, respectively, and Ŝ−1 is the inverse of the N × N
coupling matrix Ŝ. The latter is a real, symmetric, tridiagonal matrix that has its diagonal elements equal to unity, while all
the other non-zero elements are equal to s. The elements of the matrix Ŝ−1 can be obtained in closed analytical form [216]
using known results for the inversion of more general tridiagonal matrices [217]. Then, the components of the q vector can
be written as

qn = κ0

(
Ŝ−1

)
n,1
, (54)
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Fig. 14. Energy transmission through a one-dimensional SQUID metamaterial with N = 40 SQUIDs. The decimal logarithm of the energy density averaged
over τi = 2000 T time units, log10[⟨En⟩τi ], is mapped on the frequency Ω–site-number n plane for β = 1.27 (βL ≃ 8), γ = 0.001, λ = −0.014, and (a)
φac = 0.001; (b) φac = 0.01; (c) φac = 0.1; (d) φac = 0.2. From (a) to (d), the panels in the middle and right columns are enlarged regions of the panels
in the left column; middle panels enlarge the frequency region around the L C resonance, while the right panels enlarge the frequency region around the
single SQUID resonanceΩSQ . Red–orange regions indicate the frequency bands in which energy transmission is high.

where
(
Ŝ−1

)
n,1

is the (n, 1)−element of Ŝ−1, whose explicit form is given in reference [216]. Then, the solution of the linear
system of Eqs. (51) with γ = 0 is

φn(τ ) = κ0µ
sin[(N − n + 1)θ ′

]

sin[(N + 1)θ ′]
cos(Ωτ ), θ ′

= cos−1
(

1
2|s|

)
, (55)

for s > +1/2 and s < −1/2 (in the linear flux-wave band), and

φn(τ ) = κµ
sinh[(N − n + 1)θ ]
sinh[(N + 1)θ ]

cos(Ωτ ), θ = ln
1 +

√
1 − (2s)2

2|s|
, (56)
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for −1/2 < s < +1/2 (outside the linear flux-wave band), where

µ =
1
|s|

(
−

|s|
s

)n−1

. (57)

The above expressions actually provide the asymptotic solutions, i.e., after the transients due to dissipation, etc., have died
out. Thus, these driven linear modes correspond to the possible stationary states of the linearized system; the dissipation
however may alter somewhat their amplitude, without affecting very much their form. Note also that the qns are uniquely
determined by the parameters of the system, and they vanish with vanishing φac .

From the analytical solution at frequencies within the linear flux-wave band, Eqs. (55) and (56), which correspond to
either s > +1/2 or s < −1/2, the resonance frequencies of the array can be obtained by setting sin[(N + 1)θ ′

] = 0. Thus
we get

s ≡ sm =
1

2 cos
[

mπ
(N+1)

] , (58)

wherem is an integer (m = 1, . . . ,N). By solving the first of Eqs. (52) with respect toΩ , and substituting the values of s ≡ sm
from Eq. (58), we get

Ω ≡ Ωm =

√
Ω2

SQ + 2 λ cos
(

mπ
N + 1

)
, (59)

which is the discrete frequency dispersion for linear flux-waves in a one-dimensional SQUID metamaterial, with m being the
mode number (m = 1, . . . ,N).

2.5. Multistability and self-organization in disordered SQUID metamaterials

The total current of the SQUID metamaterial, divided by the number of SQUIDs and normalized to the critical current of
the Josephson junctions, Ic , is defined as

itot (τ ) =
1

NxNy

∑
n,m

In,m(t)
Ic

≡
1

NxNy

∑
n,m

in,m(τ ), (60)

where in,m(τ ) is the normalized time-dependent current flowing in the (n,m)th SQUID of themetamaterial. The total current
itot is maximum in a homogeneous (synchronized) state of the SQUID metamaterial. Homogeneous states are a subset of
all possible states which are formed through amplitude and phase synchronization of the currents in individual SQUIDs;
consequently homogeneous states provide a large magnetic response to an ac magnetic flux field, especially withing a
frequency band around the single SQUID resonance frequency. (Note however that homogeneity is never complete in the
case of finite size SQUID metamaterials). The total current itot (τ ) is calculated through the (normalized) expression

in,m =
1
β

{
φn,m − φeff − λx(φn−1,m + φn+1,m) − λy(φn,m−1 + φn,m+1)

}
, (61)

which holds in the weak coupling approximation (λx, λy ≪ 1), when the normalized fluxes φn,m have been calculated by
numerically integrating Eqs. (40). Assuming that the SQUIDmetamaterial comprises identical elements, arranged in a perfect
tetragonal lattice, the total current amplitude imax is defined as the absolute maximum of the total current itot in one period
of temporal evolution T , i.e.,

imax = maxT

{
1

NxNy

∑
n,m

in,m(τ )

}
. (62)

For disordered SQUID metamaterials, the total current amplitude is the average of imax, over a number of nR realizations,
denoted by ⟨imax⟩nR . In order to account for the termination of the structure in finite SQUID metamaterials, Eqs. (40) are
implemented with the following boundary conditions

φ0,m(τ ) = φNx+1,m(τ ) = 0, φn,0(τ ) = φn,Ny+1(τ ) = 0. (63)

In the rest of this Section, two values of the SQUID parameter are used, i.e., βL = 0.9 and βL = 8 which correspond to the
SQUIDs being in the non-hysteretic and the hysteretic regime, respectively. For these values of βL the corresponding single
SQUID resonance frequencies areΩSQ = 1.4 and 3, respectively.

Typical current amplitude–frequency curves are shown in Fig. 15, in which the total current amplitude imax is shown as
a function of the frequency Ω of the ac flux field (dc flux is set to zero). In this figure, the value of βL has been chosen so
that the SQUIDs are well into the hysteretic regime (βL ≃ 8). It is observed that bistability appears in a frequency band of
substantial width. The corresponding curves (black-dotted) for a single SQUID are also shown for comparison. In Fig. 15(a),
in which periodic boundary conditions have been employed, the bistability region for the SQUID metamaterial is narrower
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Fig. 15. Induced total current amplitude imax as a function of the driving frequencyΩ for two-dimensional Nx × Ny SQUID metamaterials with γ = 0.002,
φdc = 0, and (a) β = 1.27, Nx = Ny = 20, φac = 0.1, periodic boundary conditions; (b) β = 1.27, Nx = Ny = 20, φac = 0.1, free-end boundary conditions;
(c) β = 0.15, φac = 0.02, Nx = Ny = 20, free-end boundary conditions; (d) β = 0.15, φac = 0.02, Nx = Ny = 40, free-end boundary conditions. The black
dotted lines indicate the corresponding imax vs.Ω curves for a single rf SQUID.

than that for a single SQUID, although the total current amplitude is slightly larger than that for a single SQUID. For periodic
boundary conditions, the size of the metamaterial does not affect those results; current amplitude–frequency curves for
larger arrays with Nx = Ny = 40 and Nx = Ny = 80 (not shown here) are practically identical to those shown in Fig. 15(a). In
all the other figures till the end of this Section, free-end boundary conditions [Eqs. (63)] which are appropriate for finite-size
SQUIDmetamaterials are assumed. In that case, the total current amplitude–frequency curves are very sensitive to the initial
conditions as well as the model and numerical parameters such as the frequency increment, the scanned frequency band,
etc. For an illustration, the curves shown in Fig. 15(b) in different colors (red and green) have been calculated using different
initializations of the SQUID metamaterial. The parts of the current amplitude–frequency curves for the SQUID metamaterial
which are close to those for a single SQUID are formed by almost homogeneous states, i.e., states in which all the SQUIDs
are close to either the high-current amplitude or the low-current amplitude single-SQUID states. Completely homogeneous
states are formed easily in periodic SQUID metamaterials, but they are destroyed by perturbations in the finite-size ones;
compare Fig. 15(a) and 15b. In the latter figure, the observed staircase-like curve with many small steps indicates the
existence ofmany different solutionswhich are formedwhen a number of SQUIDs are close to the high-current single-SQUID
state while the others are in the low-current single-SQUID state. In Fig. 15(c) and (d), the corresponding curves for SQUIDs
with βL ≲ 1 (β = 0.15) are shown. A comparison with the corresponding curves for a single SQUID (black-dotted curves)
indicates that the bistability regions have nearly the same width. For the values of φac used in Fig. 15, the nonlinearities
are already substantial, and thus capable to make the total current amplitude–frequency curves significantly hysteretic. The
excited nonlinearities are also evident from the shifting of the resonance frequency of the SQUIDmetamaterial, which should
be close to ΩSQ in the linear regime, to considerably lower values. Indeed, the maximum of the total current amplitude in
Fig. 15(c) and (d) is atΩ ∼ 1.2, while the correspondingΩSQ is ∼ 1.39.

Up to this point, all the SQUIDs in a metamaterial are assumed to be identical; however, slight deviations in the values of
the parameters of individual SQUIDsmay occur in a SQUIDmetamaterial, due to unavoidable imperfections in the fabrication
procedure. The existing experience shows that the available fabrication technology allows for the fabrication of SQUID
metamaterials with parameter variation within a few percent from one SQUID to another (typically 1 − 2%). Thus, weak
quenched disorder is present in all realizable SQUID metamaterials, that may affect their collective behavior. One possible
source of disorder comes through random deviations of the critical currents Ic of the Josephson junctions in the SQUIDs
from a particular target value. Random variation of the critical current from one SQUID to another affects in turn the SQUID
parameter βL of individual SQUIDs and eventually their nominal resonance frequencyΩSQ . There are of course other sources
of disorder, which are related to the experimental apparatus and/or the procedure of measurement [202]; e.g., the presence
of stray magnetic fields that are created either by the magnetic components in the experimental setup or by sources from
outside, such as the magnetic field of the earth. Stray magnetic fields effectively cause inhomogeneities in the applied field,
so that different SQUIDs are subjected to different bias (dc) flux fields which shift randomly their resonance frequency away
from its nominal value. Their effect is clearly revealed in the spoiled tunability patterns in reference [202]. In the rest of this
Section, β (equivalently βL) is allowed to vary randomly from one SQUID to another around a target (mean) valueΩSQ , by a
few percent. In order tomake statisticallymeaningful predictions, statistical averages of the currents overmany realizations,
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Fig. 16. Left: Total current amplitude averaged over nR = 30 realizations of disorder, ⟨imax⟩nR , as a function of the driving frequency Ω for a SQUID
metamaterial with Nx = Ny = 20, α = 0.002, β = 1.27, φac = 0.1, φdc = 0, and (a) δβ = ±0.01; (b) δβ = ±0.05; (c) δβ = ±0.1. Right: The
corresponding magnitude of the synchronization parameter averaged over nR = 30 realizations of disorder, ⟨|Ψ |⟩nR , as a function of the driving frequency
Ω in the bistability region for a SQUID metamaterial with Nx = Ny = 20, α = 0.002, β = 1.27, δβ = ±0.01, φdc = 0, φac = 0.1, and (a) δβ = ±0.01; (b)
δβ = ±0.05; (c) δβ = ±0.1. The arrows indicate the direction of frequency variation while the green dotted lines the corresponding bistability intervals.

nR, of disorder configurations have to be made. Remarkably, the calculations reveal that weak disorder does not destroy
bistability, but, instead, it stabilizes the system against modulational or other instabilities. The robustness of the bistability
region is important for prospective applications in which SQUID metamaterials could replace nonlinear resonators as read-
out units for superconducting flux qubits [218], that perform quantum non-demolition measurements.

The effect of weak quenched disorder on the total current amplitude–frequency curves of SQUIDmetamaterials is shown
in Fig. 16, inwhich theβ parameters of the SQUIDs are drawn fromauniform randomdistribution of zeromean. For obtaining
statistically reliable results, statistical averages are calculated over nR realizations of quenched disorder. In the left panels
of Fig. 16(a), b, and c, the disorder strength on the parameter β is ±0.01, ±0.05, and ±0.1, respectively, and nR = 30.
In the left panels of Fig. 16, the stability interval of the high-current amplitude, almost homogeneous states shrinks with
increasing strength of disorder. Apparently, weak disorder exhibits wider bistability as compared to the corresponding
ordered case [204]. Those results are related to earlier work on disordered networks of nonlinear oscillators in which
moderate disordermay enhance synchronization and stabilize the system against chaos [219,220]. Stabilization of Josephson
circuits against chaos, in particular, has been recently demonstrated by numerical simulations in the time domain [221].
Moreover, experimental stabilization of qubit spectral resonancewith randompulses has been observed [222]. In the context
of SQUID metamaterials, synchronization of individual SQUIDs in the high or low current amplitude states results in high or
low total current amplitude for themetamaterial as awhole. This requires that (almost) all the SQUIDs are in phase. It could be
natural to assume that the more nearly identical the elements of a SQUIDmetamaterial are, the better their synchronization
will be. However, even in the ideal case of identical elements, the earlier assumption may not be true and the in-phase state
may be dynamically unstable. Then, synchronization is reduced and the SQUID metamaterial cannot remain for too long in
the high total current amplitude state that is more sensitive to instability. This type of disorder-assisted self-organization
may also occur by introducing local disorder in an array of otherwise identical oscillators, i.e., in the form of impurities
[223,224]. In this case, the impurities trigger a self-organizing process that brings the system to complete synchronization
and suppression of chaotic behavior.

In order to ensure that the averaged total current amplitude–frequency curves in the left panels of Fig. 16 indeed
correspond to (almost) homogeneous (uniform) states, an appropriate measure of synchronization has to be calculated.
Thus, a complex synchronization parameter is defined as

Ψ =

⟨
1

Nx Ny

∑
n,m

e2π iφn,m
⟩
τ ,nR

, (64)

where the brackets ⟨⟩ denote averaging both in time (i.e., in one oscillation period, τ = T ) and the number of realizations of
disorder nR. Themagnitude ofΨ quantifies the degree of synchronization between the SQUIDs; |Ψ |may vary between 0 and
1, corresponding to completely asynchronous and synchronized states, respectively. The calculated values of |Ψ | for (parts
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of) the averaged total current amplitude–frequency are shown in the right panels of Fig. 16 for strongly driven SQUIDmeta-
material and three different levels of disorder. The bistability regions shrinks with increasing strength of disorder (from top
to bottom); the parameter |Ψ | for the low current amplitude states remains close to unity for the whole range of frequencies
shown. That parameter for the high current amplitude states exhibits similar behaviorwithin the bistability region; however,
as soon as the frequency reaches the lower boundary of the bistability region, the high current amplitude states start losing
their stability and the synchronization breaks down. Thus, for frequencies below the left green (dotted) vertical line, the
SQUID metamaterial has settled to a low current amplitude state which however preserve some degree of synchronization.

Themagnetic response of the SQUIDmetamaterial at any particular state can be calculated in terms of the magnetization
using simple electrical equivalent circuit models [118,133,134]. Assuming for simplicity a tetragonal unit cell (dx = dy = d)
with isotropic interactions between neighboring SQUIDs (λx = λy ≡ λ), and a squared SQUID area of side α, the
magnetization is

M =
α2

⟨I⟩
d2D

, (65)

where ⟨I⟩ = Ic ⟨i⟩ ≡ Ic 1
NxNy

∑
n,m⟨in,m⟩τ is the spatially and temporally averaged current in the SQUID. Note that SQUID

metamaterials fabrication technology is currently planar, while the magnetization is defined to be inversely proportional to
a unit volume. However, the experiments on SQUID metamaterials currently involve waveguides, in which the samples are
placed. Thus, the necessary third dimension, which enters into the expression for themagnetization Eq. (65), comes from the
length of the waveguide cavity in the direction that is perpendicular to the SQUID metamaterial plane D [34,118,134,202].
Using fundamental relations of electromagnetism, the relative magnetic permeability can be written as

µr = 1 +
M
H
, (66)

where H is the intensity of a spatially uniformmagnetic field applied perpendicularly to the SQUIDmetamaterial plane. The
latter is related to the external flux applied to the SQUIDs through

H =
Φ0

µ0α2 ⟨φext⟩, (67)

where µ0 is the magnetic permeability of the vacuum, and the brackets denote temporal averaging. Combining Eqs.
(65)–(67), we get

µr = 1 + κ
⟨i⟩

⟨φext⟩
, (68)

where the coefficient κ =
µ0αIc
Φ0

α3

d2D
is the analogue of the filling factor in the context of conventional metamaterials. For a

rough estimation of the constant κ we assume that L ∼ µ0α, where L is the SQUID self-inductance, and that D ≃ d. Then,
we have that κ ∼ β

(
α
d

)3. Using α = d/2 and β = 1.27 we get κ ≃ 0.16.
While the expression for the magnetic permeability is rather simple, there is some uncertainty about the value of the

factor κ . However, for a reasonable value of κ the magnetic permeability can be negative within a narrow frequency band
above the single-SQUID resonance frequency forweakly driven SQUIDmetamaterials. In that case, increasing disorder results
in weakening the negative response of the metamaterial; thus, for relatively strong disorder the response is not sufficient to
provide negativeµr even for strongly driven SQUIDmetamaterials, as can be seen in Fig. 17(a). In that figure it is also observed
that due to the bistability, the relative magnetic permeability µr may obtain two different values depending on which state
the SQUID metamaterial is. The currents in,m with given φext can be calculated from Eq. (61) when the corresponding φn,m
have been calculated from Eq. (40). Then, Eq. (68) provides µr for a particular, parameter-dependent κ coefficient. Thus,
simultaneously stable SQUID metamaterial states exhibit different magnetic responses to an external magnetic field and
therefore exhibit different values of µr . Such magnetic multi-response in the presence of disorder is observed in Fig. 17(a),
with the corresponding ⟨imax⟩nR − Ω curves shown in Fig. 17(b). The same quantities are shown in Fig. 17(c) and (d),
respectively, for a weakly driven SQUID metamaterial and lower strength of disorder. Here, β varies randomly by ±0.1
( 8%) around the nominal value β = 1.27. The nonlinear effects become unimportant bringing the metamaterial close to the
linear limit, and the hysteresis in the ⟨imax⟩nR −Ω curve as well as in theµr −Ω curve disappears. Note that the behavior of
µr follows closely that of the averaged total current amplitude ⟨imax⟩nR . Furthermore, at driving frequencies below (but very
close to) the single-SQUID resonance in the linear regimeΩSQ ≃ 3 (β = 1.27), the SQUID metamaterial becomes strongly
diamagnetic, so that it actually crosses the zero µr line. Such extreme diamagnetism corresponds to negative µr , which
persists within a narrow frequency band, just like in conventional metamaterials. Similar calculations with a transmission
line model fed by experimental transmission data, produce qualitatively similar results [34].

3. SQUID-Based metamaterials II: Localization and novel dynamic states

3.1. Intrinsic localization in Hamiltonian and dissipative systems

Discrete breathers (DBs), also known as intrinsic localized modes (ILMs), are spatially localized and time-periodic
excitationswhich appear generically in extendedperiodic discrete systemsofweakly couplednonlinear oscillators [225–228].
DBs may be generated spontaneously as a result of fluctuations [229,230], disorder [231], or by purely deterministic
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Fig. 17. Relative magnetic permeabilityµr = µ/µ0 for the low and high current amplitude states as a function of the driving frequencyΩ , for a disordered
SQUID metamaterial with Nx = Ny = 20, γ = 0.002, β = 1.27, φdc = 0, and (a) δβ = ±0.1, φac = 0.1; (c) δβ = ±0.01, φac = 0.001. The corresponding
total current amplitude–frequency curves are shown in (b) and (d), respectively. Multiple-valued magnetic response is observed in the bistability region
of (a). Negative µr is observed in (c) within a narrow frequency band just above the resonance frequency. The parameters of (a) and (b) are the same with
those in Fig. 16c (left panels).

mechanisms [232–234]. Since their discovery [235], in a large volume of analytical and numerical studies the conditions for
their existence and their properties have been explored for a variety of nonlinear mathematical models of physical systems.
Their very existence has been proved rigorously for both energy-conserving (Hamiltonian) and dissipative lattices [236,237],
and several numerical algorithms have been designed for their accurate construction [238–241]. A fundamental requirement
for their existence is that their frequency of oscillation and itsmultitudes are outside the linear frequency band. Importantly,
they have been observed in a variety of physical systems, such as solid state mixed-valence transition metal com-
plexes [242], quasi-one dimensional antiferromagnetic chains [243], arrays and ladders of Josephson junctions [244–247],
micromechanical cantilever arrays [248], optical waveguide systems [249], layered crystal insulator at 300 K [250], and
proteins [251]. Further experiments concerning breathers in crystals are reviewed in Ref. [228]. Once generated, DBs modify
systemproperties such as lattice thermodynamics and introduce the possibility of nondispersive energy transport [252,253],
because of their potential for translatory motion (i.e., mobility) along the lattice [254]. In numerical experiments, DB
mobility can be achieved by applying appropriate perturbations [255]. From the perspective of applications to experimental
situations where dissipation is always present, dissipative DB excitations (usually driven by a sinusoidal power source) are
more relevant than their energy-conserved (Hamiltonian) counterparts. Dissipative DBs, which possess the character of an
attractor for initial conditions in the corresponding basin of attraction, are generated whenever power balance, instead of
the conservation of energy, governs the dynamics of the nonlinear lattice. Furthermore, the attractor character of dissipative
DBs allows for the existence of quasi-periodic and even chaotic DBs [256,257].

3.2. Dissipative breathers in SQUID metamaterials

The existence of dissipativeDBs has been numerically demonstrated in conventional (metallic)metamaterials comprising
split-ring resonators, both in the ‘‘bulk’’ and the ‘‘surface’’ (i.e., in the ends and the edges, respectively, of one- and
two-dimensional finite systems) [258–261], as well as in binary metamaterial models [262,263]. In typical experimental
situations, SQUID metamaterials are driven by an ac (sinusoidal) flux field and they are subjected to dissipation, mainly
due to quasi-particle tunneling through the Josephson junction. Their discreteness, along with weak coupling between their
elements and the (Josephson) nonlinearity, favors the appearance of dissipative breathers. Moreover, due to low dissipation
in SQUID metamaterials, dissipative breathers in those systems could be in principle observed experimentally through
advanced imaging techniques such as the Laser Scanning Microscopy (LSM) [264]. Here, the existence of dissipative DBs
in SQUID metamaterials is demonstrated in the one-dimensional case, for simplicity and ease of presentation; however, it
has been demonstrated that increasing dimensionality does not destroy breather excitations either in conventional or SQUID
metamaterials [163,207]. In SQUIDmetamaterials, dissipative DBs can be generated either by properly designed their initial
state, or by driving them through a stage of modulational instability; the latter method allows for spontaneous formation
of dissipative DBs. Since the SQUIDs in a metamaterial are weakly coupled (through magnetic dipole–dipole forces), the
breather structures which are generated with either of these two methods are highly localized; thus, a large amount of the
energy provided initially to the SQUID metamaterial is concentrated in only a few SQUIDs. The generation and subsequent
evolution of dissipative DBs can thus be visualized on three-dimensional plots in which the fluxes through the SQUIDs or the
currents in the SQUIDs are plotted on the lattice siten–time τ plane. In order to generateDBs by initialization, a trivial breather
configuration has to be constructed first, which corresponds to a numerically accurate solution in the case of vanishing
coupling between SQUIDs (anti-continuous limit [238]). Then, using one of the several breather-finding algorithms, a DB
family can be obtained by slowly increasing the coupling coefficient, say λ. That family has a member-breather for each
value of λ up to a critical one λc that depends on the other parameters of the system; for λ > λc the DB family destabilizes
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Fig. 18. (a) Temporal evolution of a dissipative discrete breather during one driving period Tb = 2π/Ωb = 6.6, for φdc = 0.5, φac = 0.2, β = 1.27,
γ = 0.001, λ = −0.1. (b) & (d) Temporal evolution of a dissipative discrete breather during one driving period Tb = 2π/Ωb = 6.6, for φdc = 0, φac = 0.6,
β = 1.27, γ = 0.001, λ = −0.1. (c) Temporal evolution of a dissipative discrete breather during three driving periods Tb = 2π/Ωb = 12.57, for φdc = 0,
φac = 1.2, β = 1.27, γ = 0.001, λ = −0.0225. From (a) to (d), only part of the array (N = 30) is shown for clarity.

and disappears. In order to construct a trivial dissipative DB configuration, sufficiently strong nonlinearity is required for the
individual SQUIDs to exhibit multistability; for that purpose, one first calculates the flux amplitude φmax–driving frequency
Ω curve of the single SQUID. For a particular frequency Ω in the multistability region, at least two simultaneously stable
solutions of the single SQUID (all the SQUIDs are regarded to be identical) have to be identified, say (φ0, φ̇0 (0)) and (φ1, φ̇1
(1)), with low and high flux amplitude φmax,0 and φmax,1, respectively. Then the initial state of the SQUID metamaterial is
constructed by setting one of the SQUIDs, say that at n = N/2 in the state-solution 1, and all the others to the state-solution
0 (N is the number of SQUIDS in the metamaterial). The SQUID at n = N/2 is hereafter referred to as the central DB site,
which also determines its location; all the others constitute the ‘‘background’’. That configuration is used as initial condition
for the integration in time of Eqs. (24) to numerically obtain a stable dissipative DB for a given value of λ. Note that one could
start integrating at λ = 0 and then slowly increase the value of λ up to the desired one (λ < λc); however, since λ ≪ 1, that
continuation procedure may not be necessary. Note also that the procedure for obtaining dissipative DBs is easier than the
corresponding one for obtaining Hamiltonian DBs, for which Newton’s method instead of merely numerical integration is
required. In the obtained dissipative DB state, all the SQUIDs are oscillatingwith frequencyΩb = Ω (period-1 DBs, with their
frequency being locked to that of the driving flux fieldΩ), although their flux or current amplitudes are generally different.
Note however that there may also be DBs with more complicated temporal behavior [256].

For a metamaterial comprising hysteretic SQUIDs (βL > 1), there are more possibilities for constructing trivial DB
configurations. Recall that for βL > 1, the SQUID potential has more than one minimums, with their number increasing
by further increasing βL. Furthermore, a dc flux bias φdc also affects the SQUID potential at will; for example, by applying a
dc flux bias φdc = 0.5, the SQUID potential becomes a double-well one. Then, there are at least two simultaneously stable
states, one with φmax ∼ 0 and the other with φmax ∼ 1, corresponding to the left and right minimum of the SQUID potential,
respectively. Those states can be employed to construct a trivial DB configuration as described earlier. Such a double-well
dissipative DB is shown in Fig. 18(a), in which the spatio-temporal evolution of the induced currents in (n = 1, 2, 3, . . . ,N)
is plotted during one period of the DB oscillation, Tb =

2π
Ωb

. The currents in both the background SQUIDs and the SQUID on
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Fig. 19. (a) & (b) Floquet spectra for the simultaneously stable dissipative discrete breathers shown in Fig. 18(b) and (d), respectively; all the eigenvalues
lie on a circle of radius Re = exp(−γ Tb/2) ≃ 0.996705 in the complex plane. (c) Floquet spectra for the period-3 dissipative discrete breather shown in
Fig. 18(c); all the eigenvalues lie on a circle of radius Re = exp(−γ Tb/2) ≃ 0.993735. (d) Reduced stroboscopic diagrams for the SQUID at the central DB site
at n = nb = N/2 (red circles), and the SQUID at n = 7 in the background (black square), for the period-3 dissipative discrete breather shown in Fig. 18(c).

the central site are oscillating with the same frequency Ωb = Ω , i.e., the frequency of the driving flux field. For φdc = 0
but still βL > 1, no other DBs of that type can be obtained, since the local minimums are highly metastable; for sufficiently
high ac flux amplitude φac there may be more stable states which are generated dynamically due to strong nonlinearity.
These states, which usually have high flux amplitude φmax can be used to construct trivial DB configurations as described
earlier. Two typical examples of such dissipative DBs, which are simultaneously stable, are shown in Fig. 18(b) and (d). This is
possible because at that frequency (with corresponding period Tb = 6.6) there are three simultaneously stable single-SQUID
solutions; onewith low flux amplitudeφmax and twowith high flux amplitudeφmax. Each of the high flux amplitude solutions
can be combined with the low flux amplitude solution so that two trivial DB configurations can be constructed, which result
in the two different dissipative DBs. The DB frequencyΩb is again locked to the driving frequencyΩ (Ωb = Ω). For relatively
weak coupling between SQUIDs, dissipative DBs can be also obtained which period of oscillation is a multiple of that of the
external driverΩ (subharmonic dissipative DBs). Such a period-3 dissipative DB is shown in Fig. 18(c), in which the current
in the SQUID of the central DB site apparently oscillates with Tb = 3T , with T = 2π/Ω , while the currents in the background
SQUIDs oscillate with Tb = T . Some remarks are here in order: a major difference between Hamiltonian and dissipative DBs
is that in the former the background oscillators are at rest at all time while in the latter the background oscillators oscillate
as well, although with an amplitude different than that of the oscillator at the central DB site. In Fig. 18(a), the currents in
all the SQUIDs are oscillating in phase; to the contrary, in Fig. 18(b), (c), and (d), the currents in the background SQUIDs are
in anti-phase with respect to the current in the SQUID of the central DB site. This has significant consequences for the local
magnetic response of the SQUIDmetamaterial, since the local magnetization is directly proportional to the induced current.
Thus, the observed phase difference indicates that the breathers may change locally the magnetic response of the system
from paramagnetic to diamagnetic or vice versa [163,207]. In Fig. 18(a), (b), and (d), the time-dependence of the currents in
the background SQUIDs is clearly non-sinusoidal, due to strong nonlinearities. The time-dependence of the current in the
SQUID of the central DB site on the other hand seems perfectly sinusoidal, which is due to the high flux amplitude and the
shape of the SQUID potential.

The linear stability of dissipative DBs is addressed through the eigenvalues of the Floquet matrix (Floquet multipliers).
A dissipativeDB is linearly stablewhen all its Floquetmultipliersmi, i = 1, . . . , 2N lie on a circle of radius Re = exp(−γ Tb/2)
in the complex plane [239]. All the dissipative DBs shown in Fig. 18 are linearly stable. The calculated eigenvalues for the two
simultaneously stable dissipative DBs in Fig. 18(b) and (d), are shown respectively in Fig. 19(a) and (b). The Floquet spectrum
for the period-3 dissipative DB in Fig. 18(c), is shown in Fig. 19(c). In Fig. 19(d), two reduced stroboscopic diagrams are shown
on the vn − φn plane, with vn = φ̇n being the normalized instantaneous voltage across the Josephson junction of the nth
SQUID. The one diagram is for the SQUID at the central DB site, i.e., at n = nb = N/2. while the other is for a SQUID in the
background, at n = 7. Clearly, the trajectory of the SQUID at n = nb crosses the reduced phase space at three points (red
circles), while that at n = 7 at only one point (black square).

For generating dissipative DBs experimentally, the approach based on Marin’s algorithm [239] is not particularly useful,
since it requires from the system to be initialized in a rather specific state. However, DB generation in SQUID metamaterials
may be a relatively easy task whenever weak disorder is present, e.g., due to imperfections during fabrication. In a particular
realization of a SQUID metamaterial, the SQUIDs are not completely identical but the values of their parameters slightly
fluctuate around a mean nominal value. The parameter which is affected the most from those imperfections seems to
be the critical current of the Josephson element Ic in each SQUID, which varies exponentially with the thickness of the
insulating barrier. Moreover, Ic is proportional to the SQUID parameter βL which multiplies the nonlinear term in the SQUID
flux equation and essentially determines its characteristic behavior. In order to take into account that type of disorder, the
parameterβ = βL/2π is allowed to vary randomly around its nominal value by±1%of that value. The randomnumbers in the
interval [β−1%, β+1%] are drawn fromauniformdistributionwithmean valueβ . Numerical simulation of disordered SQUID
metamaterials for many different configurations of disorder reveal that in most cases spontaneously generated dissipative
DBs appear. In Fig. 20, the spontaneous generation of dissipativeDBs is illustrated for twodifferent configurations of disorder.
In that figure, the instantaneous voltage across the Josephson junction of each SQUID vn = φ̇n =

dφn
dτ is plotted on the τ − n

plane. For different configurations of disorder (while all other parameters are kept the same) a different number of dissipative
DBs may appear at different locations in the metamaterial. As can be observed, the number of spontaneously generated DBs
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Fig. 20. Spatiotemporal evolution of dissipative discrete breathers excited spontaneously in weakly disordered SQUIDmetamaterials during six (6) periods
of the driving flux field. The voltages vn = dφ/dτ across the Josephson junctions of the SQUIDs in themetamaterial are plotted on the τ–n plane for φdc = 0,
φac = 0.03, β = 1.27, γ = 0.001, λ = −0.0014,Ω = 3.11, and N = 50. The left and right panels correspond to different configurations of disorder, which
are realized by adding to β random numbers from a uniform distribution in the interval [−0.01β,+0.01β].

is one and three for the left and the right panel of Fig. 20, respectively. Furthermore, in the left panel, the period of voltage
oscillations is twice that of the driver and that of the voltages of the SQUIDs in the background. Thus, this dissipative DB is a
period-2 one.

3.3. Collective counter-intuitive dynamic states

The investigation of networks of coupled nonlinear elements pervades all of science, from neurobiology to statistical
physics, often revealing remarkable aspects of collective behavior [265,266]. The effect of non-local interactions, which
constitutes the ‘‘dark corner’’ of nonlinear dynamics, has been extensively investigated in the last decade and has unveiled
collective dynamic effects such as synchronization [267,268], pattern formation [269], and Turing instabilities [270].
Recently, a dynamic state which is qualitatively distinct and it has a counter-intuitive structure, referred to in current
literature as a ‘‘chimera state’’, was discovered in numerical simulations of non-locally coupled oscillator arrays [167].
That discovery was followed by intense theoretical [271–282] and experimental [283–294] activity. A chimera state
is characterized by the coexistence of synchronous and asynchronous clusters (subgroups) of oscillators, even though
they are coupled symmetrically and they are identical [168,295]. Recent works also report on the issue of robustness
of chimera states [296] as well as on the emergence of chimera states in systems with global [282,297–299] and local
coupling schemes [166,300]. Chimera-like states inmodular networks [301,302] have been also investigated, expanding our
understanding on the role of topology and dynamics for their occurrence. Further research efforts aim to stabilize chimera
states by feedback schemes [303] and to control the localization of the different regimes [304–306]. Although chimera states
are generally regarded to be metastable [301,307], or even chaotic transients [308], there are also examples in which they
are at the global minimum of a system, such as in Ising spins in thermal equilibrium [309]. The level of synchronization and
metastability of chimera states can be quantified usingmeasures of local and global synchronization [196,301,307],measures
of metastability [165,301,307], the chimera index [310], etc. Many different types of non-local interactions between the
oscillators in a given network have been considered in literature, often exponentially decaying, that allow a particular system
to reach a chimera state. The crucial ingredient for the emergence of chimera states is the choice of initial conditions. Those
states do not actually result from destabilization of the more familiar homogeneous (i.e., synchronized) or clustered states,
but they usually coexist with (some of) them. Thus, without an appropriate choice of initial condition, the systemwill reach
one of those instead of a chimeric one. SQUID metamaterials seem to be perfect candidates for the observation of chimera
states, since their constitutive elements are essentially non-locally coupled and they are highly nonlinear oscillators. Those
elements (i.e., the SQUIDs) may also exhibit multistability in a frequency band around the single-SQUID resonance. As it has
been discussed in the previous Section, SQUIDs are coupled magnetically through dipole–dipole forces which fall-off as the
inverse cube of their center-to-center distance. That coupling, although short-ranged [311] and weak due to its magnetic
nature, is clearly non-local. For simplicity, the one-dimensional non-localmodel, Eqs. (21),with appropriate initial conditions
are used for obtaining very long-lived chimera states in SQUID metamaterials.

3.4. Chimera states in SQUID metamaterials

3.4.1. SQUID metamaterials with non-local coupling
The one-dimensional SQUID metamaterial is initialized with

φn(τ = 0) = φR, φ̇n(τ = 0) = 0, (69)

where φR is a random number drawn from a flat, zero mean distribution in [−φR/2,+φR/2]. The following boundary
conditions

φ0(τ ) = 0, φN+1(τ ) = 0, (70)
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Fig. 21. Spatio-temporal evolution of the normalized fluxes φn threading the SQUID rings during four driving periods T = 5.9 for N = 256, γ = 0.0022,
λ0 = −0.05, βL ≃ 0.7, φac = 0.015, and φR = 0.85. (a) for the whole SQUID metamaterial; (b) for part of the metamaterial that belongs to the coherent
cluster; (c) for part of the metamaterial that includes the incoherent cluster.

are used to account for the termination of the structure in a finite SQUIDmetamaterial. The degree of synchronization for the
whole SQUIDmetamaterial or just a part of it (e.g., a cluster havingM SQUIDs withM ≤ N , with N being the total number of
SQUIDs in the metamaterial) is quantified by the magnitude of a complex, Kuramoto-type synchronization parameterΨ (τ ),
defined as

Ψ (τ ) =
1
M

M∑
m=1

ei[2πφm(τ )]. (71)

The magnitude of that synchronization parameter, r(τ ) = |Ψ (τ )|, provides a global (for the whole metamaterial) or local
(within a cluster) measure of spatial coherence at time-instant τ . The value of r(τ ) by its definition lies in the interval [0, 1],
where the extremal values 0 and 1 correspond to complete desynchronization and synchronization, respectively. The mean
synchrony level r̄ , which is an index of the global synchronization level, is defined as the average of r(τ ) over the total time
of integration (excluding transients) [307], while the variance of r(τ ), σ 2

r , captures how the degree of synchrony fluctuates in
time. Fluctuations of the degree of synchronization have been associated withmetastability and therefore σ 2

r is indicative of
themetamaterial’smetastability level [301,307]. A typical spatio-temporal flux pattern for the SQUIDmetamaterial, obtained
after 107 time units of time-integration, is shown in Fig. 21(a), in which the evolution of the φns is monitored during four
driving periods T = 2π/Ω . In that pattern, two different domains can be distinguished, inwhich the fluxes through the loops
of the SQUIDs are oscillating either with low or high amplitude. The enlargement of two particular sub-domains shown in
Fig. 21(b) and (c), reveals the unexpected featurewhich characterizes a chimera state; besides the difference in the oscillation
amplitudes (i.e., low-high), the two groups of SQUIDs exhibit distinctly different dynamic behaviors: the low-amplitude
oscillations are completely synchronized (Fig. 21(b)) while the high-amplitude ones are desynchronized both in phase and
amplitude (Fig. 21(c)). Note that since the SQUID metamaterial is driven at a particular frequency Ω , there can be no net
frequency drift as in phase oscillators [167]; instead, the period of each SQUID in the asynchronous cluster fluctuates around
that of the driver, T .

The chimera states are very sensitive to slight changes of themodel parameters, the parameters of the applied flux field(s),
as well as the integration parameters such as the time-step∆τ of the integration algorithm. The latter is chosen to be 0.02,
which provides reliable results for systems of nonlinear oscillators. Decreasing of the time-step (i.e., to ∆τ = 0.01) leads
the SQUID metamaterial to a different chimera state due to metastability effects; that state may be either more or less
synchronized than the previous one, depending on the other parameters. For the parameters used in this Section, the SQUID
metamaterial reaches spontaneously a chimera state for most of the initial flux density configurations with φR ∼ Φ0.

In Fig. 22(a) and (b), the long-term spatio-temporal evolution for the fluxes φn is mapped on the n − τ plane for two
different initial flux configurations (i.e., different φR); the values of the φns are obtained at time-instants that are multiples
of the driving period T , so that uniform (non-uniform) colorization indicates synchronous (asynchronous) dynamics.
In Fig. 22(a), the spontaneous formation of two large clusters of SQUIDs, one with synchronized and the other with
desynchronized dynamics, can be observed. More clusters of SQUIDs, two with synchronized and two with desynchronized
dynamics, can be observed in Fig. 22(b), inwhich the effect ofmetastability is reflected in the sudden expansions of the upper
asynchronous cluster at around τ ∼ 0.35 × 107 t.u. (green arrow). In the corresponding time-dependent magnitudes of the
synchronization parameter averaged over the driving period T , ⟨r(τ )⟩T = ⟨|Ψ (τ )|⟩T , those sudden expansions correspond
to jumps towards lower synchronization levels (Fig. 22(c)). Note that the same calculations, when performed using nearest-
neighbor (local) coupling, result not in chimera states but instead in clustered states. The latter are also non-homogeneous
states, in which two or more groups of SQUIDs are spontaneously formed; the SQUID dynamics is synchronized within each
cluster, however, the clusters are not synchronized to each other. Thus, in a clustered state, ⟨r(τ )⟩T can be significantly lower
than unity (indicating a relatively low degree of synchronization). For zero initial conditions, both the non-locally and locally
coupled SQUIDmetamaterials result in homogeneous, completely synchronized stateswith ⟨r(τ )|⟩T practically equal to unity
at all times. Typical spatial profiles of φn and the time-derivatives of the fluxes averaged over T , ⟨φ̇n(τ )⟩T ≡ ⟨vn(τ )⟩T , at the
end of the integration time (at ∼ 107 time units) of Fig. 22(a) are shown in Fig. 22(d) and (e), respectively. Note that vn(τ )
is the instantaneous voltage across the Josephson junction of the nth SQUID, and it is the analogue of the time-derivative
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Fig. 22. (a) Flux density φn as a function of site number n and normalized time τ for a non-locally coupled SQUIDmetamaterial with N = 256, γ = 0.0021,
λ0 = −0.05, βL ≃ 0.7, and φR = 0.9, driven by an ac flux field of amplitude φac = 0.015 and period T = 5.9. (b) Same as (a) with φR = 0.8. The green arrow
indicates sudden expansions of the corresponding asynchronous cluster. (c) The correspondingmagnitude of the synchronization parameter averaged over
the driving period T , ⟨r(τ )⟩T as a function of τ ; the blue and red curves are obtained for the chimera state shown in (a) and (b), respectively. (d) Spatial
profile of the fluxes φn threading the SQUID rings at τ = 107 time units for the parameters of (a) and (b). (e) The corresponding averaged voltage profile
⟨vn(τ )⟩T = ⟨φ̇n(τ )⟩T . (f) The magnitude of the synchronization parameter averaged over T , ⟨r(τ )⟩T , as a function of τ , calculated for the coherent cluster in
the small-blue box (blue curve) and for the incoherent cluster in the large-green box (green curve) in (d).

of the phases of the oscillators in Kuramoto-type phase oscillator models. The pattern of ⟨vn(τ )⟩T (Fig. 22(e)) is distinctly
different from the standard one for chimera states in phase oscillator models [167], while it resembles the corresponding
one for globally coupled, complex Ginzburg–Landau oscillators [298]. In Fig. 22(d) and (e), synchronized clusters of SQUIDs
are indicated by horizontal segments; it can be observed that besides the large incoherent cluster extending from n = 143
to 256, there are actually two small ones (at around n ∼ 5 and n ∼ 112, more clearly seen in Fig. 22(e) which are not visible
in Fig. 22(d)). The measure ⟨r(τ )⟩T as a function of τ for two different clusters of SQUIDs enclosed into the blue (small)
and green (large) boxes, which exhibit synchronized and desynchronized dynamics, respectively, is shown in Fig. 22(f). The
measure ⟨r(τ )⟩T for the synchronized cluster which extends from n = 36 to 100, is close to unity for all times (blue curve in
Fig. 22(f)), while that for the desynchronized cluster has a significantly lower average and exhibits strong fluctuations which
do not decrease with time.

In order to determine the metastability levels of the chimera states presented in Fig. 22(a) and (b), the distributions of
the values of x ≡ ⟨|Ψ (τ )|⟩T s, pdf (x), at all time-steps taken during the simulation period (excluding transients, see below)
can be calculated (Fig. 23(a)). A transient period of 100T (∼5900 time units) was allowed, for which the data were discarded.
Consider first the black-solid curves in the figure, which are actually not symmetric but they fit well to an empirical skewed
Gaussian function of the form [312]

pdf (x) = pdfm exp

{
− ln(2)

[
1
b
ln
(
1 +

2b(x − xm)
D

)]2}
, (72)

where pdfm = pdf (xm) is the maximum of the distribution, xm is the value of x at which the maximum of the distribution
occurs, b is the asymmetry parameter, and D is related to the full-width half-maximum (FWHM) of the distribution,W , by

W = D
sinh(b)

b
. (73)

The green-dotted curve in Fig. 23(a) is a fit of the black-solid distribution with b = 0.37 and D = 0.0116, while pdfm and
xm are taken from the calculated distribution. That fit gives W ≃ 0.012 for the non-locally coupled SQUID metamaterial.
For the quantification of the metastability level, the FWHM of the distribution is used here (which for a symmetric Gaussian
distribution is directly proportional to the standard deviation σr , and thus W is proportional to the variance σ 2

r which is a
measure of themetastability level). The corresponding pdfm for non-homogeneous (clustered) states in locally coupled SQUID
metamaterials are effectively δ−functions, and the corresponding W s are smaller by more than two orders of magnitude,
indicating the high metastability level of the chimera states compared to that of the clustered states. The difference in
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Fig. 23. (a) The distributions (divided by their maximum value) of ⟨|Ψ (τ )|⟩T s at all instants of the simulation period (∼107 time units with time-step
∆t = 0.02) for the states shown in Fig. 22(a) and (b) (black-solid and red-dashed curve, respectively). The green-dotted curve is a fit with Eq. (72). (b)
The power spectra of φn(τ ) in semi-logarithmic scale for the SQUIDs with n = 40 and n = 190 that belong to the synchronized (black curve) and the
desynchronized (red curve) cluster, respectively, of Fig. 22(a). The arrow at right points at the eigenfrequency of individual SQUIDs,ΩSQ ≃ 1.3.

the dynamic behavior between SQUIDs in synchronized and desynchronized clusters is also revealed in the power spectra
of φn(τ ). Two such spectra for frequencies around the fundamental (driving) one are shown in semi-logarithmic scale in
Fig. 23(b), the one for a SQUID in the synchronized cluster (n = 40) and the other in the desynchronized cluster (n = 190).
Note that for the chosen parameters, the resonance frequency of individual SQUIDs is at ΩSQ ≃ 1.3, while the linear band
of the SQUID metamaterial extends fromΩmin ≃ 1.27 toΩmax ≃ 1.35. The driving frequency isΩ ≃ 1.06, well below the
lower bound of the linear spectrum,Ωmin. The spectrum for the SQUID at n = 40 (black curve) exhibits very low noise levels
and a strong peak at the driving frequency Ω . The smaller peaks in the spectrum of the n = 40 SQUID are also part of it,
and they are located at frequencies within the linear band of the SQUID metamaterial, i.e., within the range [Ωmin,Ωmax].
The longer arrow at right points at the resonance frequency (the eigenfrequency) of individual SQUIDs. Note that only a
small number of the eigenfrequencies of the SQUID metamaterial are excited in that spectrum, which seem to be selected
by random processes. To the contrary, the spectrum for the SQUID at n = 190 exhibits significant fluctuations, the peak at
the driving frequency, and in addition to that a frequency region around Ω ∼ 0.9–1.05 in which the average fluctuation
level remains approximately constant, forming a shoulder that often appears in such spectra for SQUIDs in desynchronized
clusters of chimera states.

More chimera states, emerging from a variety of initial conditions along with the corresponding local synchronization
parameter |Zn| are shown in the left and right panels, respectively, of Fig. 24. The real-valued local synchronization parameter
|Zn| is ameasure that can be calculated for a group of 2δ+1 coupled oscillators (a sub-system of a larger system ofN coupled
oscillators) at every instant of time. Its value indicates the instantaneous degree of spatial coherence, i.e., the instantaneous
degree of synchronization, of that group. It is defined as the magnitude of the complex parameter [277]

Zn =
1

2δ + 1

∑
|m−n|≤δ

e2π iφm , n = δ + 1, . . . ,N − δ. (74)

A value of the local order parameter |Zn| = 1 (|Zn| < 1) indicates that the nth oscillator belongs to a synchronized
(desynchronized) cluster of the system of N oscillators. For a finite system of N coupled oscillators such as the SQUID
metamaterial considered here (i.e., whose boundary conditions are not periodic), Eq. (74) holds for the oscillators whose
indices run from n = δ + 1 to N − δ. For the oscillators close to the boundaries of the structure, the calculation of the local
order parameter has to be modified as follows

Zn =
1

δ + 1

n+δ∑
m=n

ei2πφm , for n = 1, . . . , δ, (75)

and

Zn =
1

δ + 1

n∑
m=n−δ

ei2πφm , for N − δ + 1, . . . ,N. (76)

Here the local order parameter is employed to quantify locally the degree of synchronization of the collective states
obtained for the SQUIDmetamaterial. In the spatiotemporal flux patterns shown in the left panels of Fig. 24, the values of the
φns are obtained at time-instants that aremultiples of the driving period T = 2π/Ω of the ac flux field. In particular, Fig. 24(a)
and (c) correspond to typical chimera patterns which exhibit a cluster of desynchronized SQUIDs. In Fig. 24(a) this cluster is
small and it is located around n = 150, while in Fig. 24(c) it is much larger, spanning the region from n ≃ 70 to n ≃ 190. The
SQUIDs which do not belong to these clusters are not all synchronized to each other. Instead, small sub-clusters of SQUIDs
are apparent as stripes with uniform colorization. The SQUIDs that belong to such a stripe are synchronized; however, the
stripes are not synchronized to each other. Furthermore, the flux oscillations in the SQUIDs that belong to the desynchronized
clusters aremuch stronger than those in the other SQUIDs. In Fig. 24(b) and (d), chimera states exhibiting twodesynchronized
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Fig. 24. Left: Space–time plots for the flux density φn of the SQUID metamaterial for different initial conditions. Panels (a) and (c) show chimera states
with one desynchronized region, panels (b) and (d) show chimera states with two desynchronized regions, while panel (e) show a state with a drifting
desynchronized domain, and panel (f) shows a pattern with solitary states. Right: The corresponding space–time plots for the local order parameter |Zn|
for the states shown in the left panels. Parameter values are: T = 5.9, N = 256, γ = 0.0021, λ0 = −0.05, βL ≃ 0.7, φac = 0.015, φdc = 0.0.

clusters are shown. In Fig. 24(b) these two clusters are small and they are located around n ≃ 80 and n ≃ 160. In Fig. 24(d), on
the other hand, the two desynchronized clusters are so large that do not leave any space for any synchronized cluster to exist.
A drifting pattern can be observed in Fig. 24(e), in which the largest part of the SQUIDmetamaterial forms a desynchronized
cluster which size and position vary in time. Finally, Fig. 24(f) demonstrates a pattern of low-amplitude flux oscillations
with multiple so-called solitary states [313], where many SQUIDs have escaped from the main synchronized cluster and
perform oscillations of higher amplitudes (depicted by the light green stripes in the otherwise orange background). The
degree of synchronization within the aforementioned states is visualized through the corresponding space–time plots of
the local synchronization parameter, Eqs. (74)–(76), which are shown in the right panels of Fig. 24. Red–orange colors
denote the synchronized or coherent regions and blue–green colors the desynchronized or incoherent ones. These plots
reveal the complexity of the synchronization levels in the SQUID metamaterial: For example in Fig. 24(a) (right panels)
it can be seen that the incoherent region located in the center of the metamaterial achieves periodically high values of
synchronization demonstrated by the orange ‘‘‘islands’’ within the cluster. This is related to metastability, which was also
investigated in Ref. [165]. In the coherent cluster, on the other hand, blue stripes of low synchronization are observed,
indicating solitary states. Note that periodic synchronization, characterized by periodic variation of the synchronization
parameter, has been previously observed in phase oscillator models with external periodic driving both with and without
an inertial term [314,315].
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Fig. 25. The magnitude of the global synchronization parameter averaged over the steady-state integration time ⟨r⟩∆τ mapped as a function of the driving
frequency f and the dc flux bias φext = φdc , for a 27× 27 SQUIDmetamaterial with γ = 0.024, βL = 0.88, φac = 0.05, and (a) λ0 = −0.01; (b) λ0 = −0.03;
(c) λ0 = −0.05. In (d), ⟨r⟩∆τ is plotted as a function of f for φdc = 0.27 (black curve) and φdc = 0.258 (red curve). Inset: the instantaneous value of r is
shown as a function of time τ for φdc = 0.258 and f = 16.8 GHz.

The calculation of the global synchronization parameter averaged over the steady-state integration time, ⟨r⟩∆τ in a
physically relevant region of the parameter space of driving frequency f and dc bias flux φext = φdc , reveals the possibility
of synchronization–desynchronization transitions in SQUID metamaterials with non-local coupling. Note that the SQUID
metamaterial is initialized with zero φn and φ̇n at each point of the parameter plane. In Fig. 25(a)–(c), three maps of ⟨r⟩∆τ
are shown on the f − φdc plane for relatively strong ac driving flux amplitude φac = 0.05 and three values of the coupling
coefficient λ = −0.01 (a), −0.03 (b), and −0.05 (c), for a two-dimensional tetragonal 27 × 27 SQUID metamaterial. The
frequency f is given in natural units (GHz), while the single SQUID resonance frequency is f = fSQ = 22.6 GHz [134]. As
can be seen in the corresponding colorbars, for that value of φac and strong coupling coefficient (λ = −0.05, Fig. 25(c)),
the synchronization parameter ⟨r⟩∆τ assumes very low values in some regions of the parameter plane. Those regions are
located around φdc = ±1/4 in units ofΦ0. From Fig. 25(c), two values of φdc close to 1/4 are selected, and the corresponding
⟨r⟩∆τ as a function of the driving frequency f are plotted in Fig. 25(d). Both curves (black and red) exhibit similar behavior;
for low f the metamaterial is completely synchronized with ⟨r⟩∆τ = 1. At f ≃ 14.8 GHz and f ≃ 15.2 GHz (black and
red curve, respectively), ⟨r⟩∆τ begins dropping to lower values until it reaches a minimum at around ∼0.1. That drop
signifies a synchronization to desynchronization transition of the SQUID metamaterial with the most desynchronized state
being observed at f ∼ 16.8 GHz for both curves. For further increasing frequencies, the value of ⟨r⟩∆τ increases gradually
until reaching the value of unity (⟨r⟩∆τ = 1) where the SQUID metamaterial has return to a completely synchronized
state. Note that in that desynchronization to synchronization transition, the two curves follow closely each other. Similar
synchronization to desynchronization transitions have been observed in arrays of Josephson junctions [316]. In the inset of
Fig. 25(d), the time-dependence of the instantaneous value of the synchronization parameter r(τ ) is shown for f = 16.8GHz,
i.e., the value of f for which ⟨r⟩∆τ is the lowest. It is observed that the SQUID metamaterial remains synchronized for only
about 25 time units, and then ⟨r⟩∆τ starts oscillating strongly while its average value falls rapidly. In fact, in about 100 time
units, ⟨r⟩∆τ has already reached its lowest value. Note that the minimum value of ⟨r⟩∆τ cannot be zero since the system is
finite. As shown in the inset, however, the instantaneous value of r(τ ) can actually reach values close to zero. The minimum
value of ⟨r⟩∆τ decreases with increasing system size, while it vanishes in the ‘‘thermodynamic limit’’, i.e., for a very large
SQUID metamaterial.

3.4.2. SQUID metamaterials with local coupling
Chimera states have mostly been found for non-local coupling between the coupled oscillators. This fact has given rise

to a general notion that non-local coupling, is an essential ingredient for their existence. However, recently, it has been
demonstrated that chimeras can be achieved for global coupling as well [282,297–299]. The case of local coupling (i.e., only
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Fig. 26. Snapshots of the magnetic flux density φn at time τ = 5000 time units for two different values of the loss coefficient: γ = 0.024 in (a)–(d) and
γ = 0.0024 in (a’)–(d’). Gray solid lines mark the initial magnetic flux distribution used in the simulations. Blue solid lines in the right panel emphasize
the coherent clusters of the chimera states. The other parameters are T = 6.24 (Ω ≃ 1.007), βL = 0.86, and φac = 0.06.

nearest-neighbor interactions between the oscillators) has been studied less. In Ref. [300], chimera states were found in
locally coupled networks, but the oscillators in the systems under considerationwere not completely identical. Very recently,
the emergence of single- and double-headed chimera states in neural oscillator networks with local coupling has been
reported [317]. That system, however, is known to exhibit highmetastability,which renders the chimera state non-stationary
when tracked in long time intervals [302]. The emergence of multi-clustered robust chimera states in locally coupled SQUID
metamaterials can be demonstrated in a relevant parameter region which has been determined experimentally [134,161].
Fig. 26 shows time-snapshots of the fluxes φn for different initial conditions and for two values of the loss coefficient γ which
differ by an order of magnitude. The left panel is for γ = 0.024. The initial ‘‘sine wave’’ flux distribution for each simulation
is shown by the gray solid line. The SQUIDs that are prepared at lower values form the coherent clusters of the chimera state,
while those that are initially set at higher flux values oscillate incoherently. Moreover, as the ‘‘wavelength’’ of the initial
flux distribution increases, so does the chimera state multiplicity, i.e., the number of coherent and/or incoherent regions.
Similar behavior is observed for lower values of the loss coefficient γ = 0.0024 as shown in the right panel of Fig. 26. Here,
the incoherent clusters are better illustrated since they are approximately of equal size and do not contain oscillators that
‘‘escape’’ from the incoherent cluster abiding around low magnetic flux values, something which is visible in the left panel.
Furthermore, the coherent clusters (emphasized by the blue solid lines) are fixed around φ = 0, unlike in the left panel
where additional clusters located at slightly higher values also form. Here we must recall that the snaking resonance curve
of a single SQUID increases significantly its winding with decreasing values of γ (right panel), creating thus new branches of
stable (and equally unstable) periodic (period-1) solutions. These branches are larger in number and smaller in size compared
to those of higher γ values (left panel). The lower amplitude branches which are the biggest ones attract the SQUIDs that
eventually form the coherent clusters. The other SQUIDs have a plethora of higher flux amplitude states to choose from and,
therefore, create a more chaotic incoherent cluster than in the case of higher γ values. The observed chimera states can
be quantified again through the local synchronization parameter |Zn| [196], which is a measure for local synchronization.
A spatial average with a window size of δ = 5 elements, can be employed. In the left panel of Fig. 27 the space–time
plots of |Zn| corresponding to the chimera states of Fig. 26(a)–(d) are shown. The number of (in)coherent regions increases
according to the number of half-wavelengths in the initial conditions and the size and location of the clusters is constant in
time. Previous works on SQUIDmetamaterials demonstrated that for nonlocal coupling, single- and double-headed chimera
states coexist with solitary states [318] and metastable states of drifting (in)coherence, in a dynamical area of the SQUID
metamaterial in which the driving frequency lied outside the multistability regime [165,196]. For a suitable choice of the
driving frequency Ω , stable chimera states can be achieved for non-local coupling as well. However, those chimera states
exist only for low coupling strengths λ; the threshold value of the coupling strength in the case of local coupling is much
higher. Local coupling is therefore crucial for the emergence of robust chimera states, both in structure and in lifetime, for
large areas of parameter space.

In the previous paragraphs, the importance of multistability and the impact of the dissipation coefficient γ in the
formation of chimera states in SQUID metamaterials was stressed. In addition to that, it is important to note the role of
the network topology which is defined through the local nature of interactions and the coupling strength λ. As already
shown in Fig. 26, SQUID metamaterials exhibit a variety of coexisting multi-clustered chimera states. A systematic study in
the (λ, γ ) parameter space is depicted in the right panel of Fig. 27, in which the observed patterns for the initial conditions of
Fig. 26(a)/(a’) and b/b’ are mapped out. The numbers in the brackets correspond to themultiplicity of the respective chimera
states and ‘‘synch’’ denotes the synchronized states. The black and white asterisk mark the (λ, γ ) values used in the left
and right panel of Fig. 26, respectively. For low coupling strengths, single- and four-headed chimera states exist but only
for low values of γ . As γ increases, the effect of multistability diminishes and the system enters the synchronized state. As
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Fig. 27. Left panel: Space–time plots for the magnitude of the local synchronization parameter |Zn| of the chimera states corresponding to Fig. 26(a), (b),
(c), and (d). Right panel: Map of dynamic regimes in the (γ , λ) parameter space for the initial conditions of Fig. 26(a) and (b). Numbers in brackets denote
the multiplicity of the chimera state while ‘‘synch’’ stands for synchronization. The other parameters are as in Fig. 26.

the coupling λ becomes stronger, the synchronization threshold for γ is shifted to higher values, belowwhich three-headed
chimeras coexist with single-headed ones. The latter persist for even higher λ and γ values and at the same time double-
headed chimeras appear as well. For initial conditions with a larger modification in space (like in Fig. 26(c)/(c’) and (d)/(d’)),
chimera states with highermultiplicitymay emerge, but themechanism towards synchronization is the same: By increasing
γ , the multiplicity of the chimera state decreases and eventually the fully coherent state is reached through the appearance
of solitary states [196,318].

Single-headed chimera states with very long life-times can be also obtained generically in SQUID metamaterials with
nearest-neighbor coupling using initial conditions of the form φn(τ = 0) = −1.7 and φ̇n(τ = 0) = +1 for n in
[nℓ, nr ] = [128, 384] and zero otherwise, or as φn(τ = 0) = 3 + φR and φ̇n(τ = 0) = φR for n in [nℓ, nr ] = [128, 384]
and zero otherwise, with φR drawn from a flat, zero mean distribution in [−4,+4]. There is nothing special about those
particular initial conditions; however, different sets of initial conditions result in different chimera states. The obtained
chimeric patterns are shown in Fig. 28(a) and (b), respectively, for those initial conditions, respectively. The average over
a driving period T of the voltages in the Josephson junctions of the SQUIDs, ⟨φ̇n⟩T , are mapped onto the n − τ plane so
that uniform colorization indicates synchronized dynamics (for which the fluxes execute low amplitude oscillations). In the
region of desynchronized dynamics in the interval [nℓ, nr ], one can still distinguish a few small synchronized clusters that
break it into several subclusters. The voltage oscillations in the desynchronized clusters differ both in amplitude and phase,
since the SQUIDs there are close to or in a chaotic state. The profile of the fluxes φn threading the SQUID loops for the chimera
state in Fig. 28(a) is shown in Fig. 28(c) at the end of the integration time. The desynchronized region is indicated by the
seemingly randomly scattered points in the interval [nℓ, nr ]. The emergence of chimera states in SQUID metamaterials can
be clearly attributed to the extrememultistability around the geometrical resonance frequency of individual SQUIDs, which
leads to attractor crowding [193] accompanied by the generation of several chaotic states. Thus, with proper choice of initial
conditions, a large number of SQUIDs may find themselves in a chaotic state forming thus one (or more) desynchronized
cluster(s). Moreover, there are also periodic states in this frequency region which are highly metastable due to attractor
crowding that shrinks their basins of attraction. Thus, the flux in some of the SQUID oscillators may jump irregularly from
one periodic state to another resulting in effectively random dynamics.

For the characterization of the chimera states in Fig. 28(a) and (b), except the global measure of synchronization
⟨r⟩T = ⟨|Ψ (τ )|⟩T , ameasure of incoherence and a chimera index are defined as follows [310]. First, we define vn(τ ) ≡ ⟨φ̇n⟩T (τ ),
where the angular brackets indicate average over the driving period T , and v̄n(τ ) ≡

1
n0+1

∑+n0/2
n=−n0/2

vn(τ ) which is the local
spatial average of vn(τ ) in a region of length n0 +1 around the site n at time τ (n0 < N is an integer). Then, the local standard
deviation of vn(τ ) is defined as

σn(τ ) ≡

⟨√ 1
n0 + 1

+n0/2∑
n=−n0/2

(vn − v̄n)
2

⟩
nT

, (77)

where the large angular brackets denote averaging over the number of driving periods of time-integration (excluding
transients). The index of incoherence is then defined as S = 1 −

1
N

∑N
n=1sn, where sn = Θ(δ − σn) with Θ being the

Theta function. The index S takes its values in [0, 1], with 0 and 1 corresponding to synchronized and desynchronized states,
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Fig. 28. (a) & (b) Density plot of the fluxes φn through the SQUIDs on the n − τ plane for a SQUID metamaterial with N = 512, βL = 0.86, γ = 0.024,
λ0 = −0.025, φac = 0.06, and T = 6.24 (Ω ≃ 1.007), and different initial conditions (see text). (c) The flux density profile φn at τ = 107 time units
(∼1.6 × 106 T for the chimera state shown in (a)). (d) The local standard deviation σn as a function of the SQUID number n for the chimera state shown in
(a), for δ = 10−4 . The arrows indicate the location of small synchronized clusters. (e) The magnitude of the synchronization parameter averaged over the
driving period T , ⟨r(τ )⟩T , as a function of time τ ; the black (lower) and red (upper) curves which average to ∼0.571 and ∼0.59 correspond to the chimera
states shown in (a) and (b), respectively. (f) The distributions of ⟨r(τ )⟩T with full-width half-maximum ∼0.0091 and ∼0.0066 for the chimera states in
(a) and (b), respectively. (g) Phase portraits in the reduced, single-SQUID phase space for several SQUIDs, which number is indicated on the figure, for the
chimera state in (a). Inset: Expanded phase portrait for the n = 215 SQUID.

respectively, while all other values in between them indicate a chimera or multi-chimera state. Finally, the chimera index is
defined asη =

∑N
n=1|sn−sn+1|/2 and equals to unity (an integer greater thanunity) for a chimera (amulti-chimera) state. The

local standard deviation σn as a function of n is shown in Fig. 28(d). Its value is practically zero in the synchronized regions,
while it fluctuates between zero and unity in the desynchronized region. However, there are four small clusters indicated
by the arrows in which the dynamics is synchronized. In order for these features to be visible (also apparent in Fig. 28(a)),
the integer n0 has to be close to the number of the SQUIDs that belong to the small synchronized clusters (here n0 = 4). The
small synchronized clusters divide the central region of the SQUIDmetamaterial in a number of desynchronized clusters. The
indices of incoherence for the chimera states shown in Fig. 28(a) and (b), is S = 0.46 and S = 0.44, respectively, very close
(within 1%) to 1 − ⟨r(τ )⟩T in both cases for a threshold value δ = 10−4. The choice of both n0 and δ is rather subjective, but
they have to be such that the resulting indices agree with what we get by inspection. When properly chosen, however, they
are very useful for comparing chimera states resulting from different initial conditions. The chimera index for the states
in Fig. 28(a) and (b), is η = 5 and η = 7, respectively, roughly corresponding to the number of desynchronized clusters
of a multi-headed chimera state. The global synchronization measure ⟨r(τ )⟩T as a function of τ is shown in Fig. 28(e) as
black (lower) and red (upper) curve for the chimera state in Fig. 28(a) and (b), respectively. The average over all integration
times (initial transients have been excluded) gives, respectively, 0.571 and 0.59. The strong fluctuations of these curves
are a distinguishing feature of both single-headed and multi-headed chimera states; when the SQUID metamaterial is in a
homogeneous or clustered state, the size of fluctuations practically vanishes. For the obtained values of both the index of
incoherence and ⟨r(τ )⟩T it can be concluded that the chimera state in Fig. 28(b) is slightly more synchronized than that in
Fig. 28(a).

Moreover, their level of metastability can be estimated from the full-width half-maximum (FWHM) of the distributions
of the values of ⟨r(τ )⟩T shown in Fig. 28(f). These distributions are well fitted to a Gaussian shape while their maximums are
located at the long time averages of ⟨r(τ )⟩T . The FWHM for the black (lower hight) and the red (higher hight) distributions
turn out to be ∼0.57 and∼0.59, respectively. Thus, it can be concluded that the less synchronized chimera state in Fig. 28(a)
is at a highermetastability level. In Fig. 28(g), the phase portraits for several SQUIDs on the reduced single SQUID phase space
φn − φ̇n are shown for n = 60, 150, 160, 211, 212, 215. Those SQUIDs have been chosen because they exhibit different
dynamical behaviors which ranges from periodic (i.e., the SQUID is phase locked to the driver as for e.g., n = 60) to chaotic
(e.g. for n = 212), in which the trajectory explores a significant part of the reduced phase space.
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Fig. 29. (a) Schematic of a Lieb lattice. The three sublattices are indicated in black (corner SQUIDs), red (edge SQUIDs), and blue (edge SQUIDs) color.
The nearest-neighbor couplings λx and λy and the unit cell (green box) are also indicated. (b) The linear frequency spectrum Ωκ(κ) of the SQUID Lieb
metamaterial for β = 0.86, and λx = λy = −0.02. The flat-band frequency isΩFB = ΩSQ ≃ 1.364.

4. SQUID metamaterials on Lieb lattices

Besides the freedom of engineering the properties of the individual ‘‘particles’’ or devices such as the SQUIDs which
play the role of ‘‘atoms’’ in a metamaterial, one also has the freedom to choose the arrangement of those ‘‘particles’’ in
space. That means that one has the freedom to choose a particular type of lattice which sites will be occupied by those
‘‘particles’’. Interestingly, there are some specific lattice geometries which give rise to novel and potentially useful frequency
spectra. Such an example is the so-called Lieb lattice. The latter is actually a square-depleted (line-centered tetragonal) lattice,
described by three sites in a square unit cell as illustrated in Fig. 29(a); it is characterized by a band structure featuring a Dirac
cone intersected by a topological flat band [319,320], shown in Fig. 29(b). As it is well-known, systems with a flat-band in
their frequency spectrum support localized eigenmodes also called localized flat-band modes; such states have been recently
successfully excited and subsequently observed in photonic Lieb lattices [321,322].

4.1. Nearest-neighbor model and frequency spectrum

Consider the Lieb lattice shown schematically in Fig. 29(a), in which each site is occupied by a SQUID. That SQUID Lieb
Metamaterial (SLiMM) can be regarded as the combination of three sublattices indicated by different colors (black, red, blue).
The SQUIDs are assumed to be identical, and they are coupledmagnetically through theirmutual inductances to their nearest
neighbors. The dynamic equations for the fluxes through the loops of the SQUIDs are obtained from the combination of the
flux-balance relations

ΦA
n,m = Φext + L

{
IAn,m + λx

[
IBn−1,m + IBn,m

]
+ λy

[
ICn,m−1 + ICn,m

]}
,

ΦB
n,m = Φext + L

{
IBn,m + λx

[
IAn,m + IAn+1,m

]}
, (78)

ΦC
n,m = Φext + L

{
ICn,m + λy

[
IAn,m + IAn,m+1

]}
,

where φk
n,m with k = A, B, C is the flux through the SQUID of the (n,m)th unit cell of kind k, Ikn,m is the current in the SQUID

of the (n,m)th unit cell of kind k, Φext is the applied (external) flux, and λx = Mx/L (λy = My/L) is the dimensionless
coupling coefficient along the horizontal (vertical) direction, with Mx (My) being the corresponding mutual inductance
between neighboring SQUIDs and L the self-inductance of each SQUID. The currents Ikn,m in the SQUIDS are provided by
the resistively and capacitively shunted junction (RCSJ) model to be [97]

− Ikn,m = C
d2Φk

n,m

dt2
+

1
R
dΦk

n,m

dt
+ Ic sin

(
2π
Φk

n,m

Φ0

)
, (79)

whereR is the subgap resistance through the Josephson junction of each SQUID, C is the capacitance of the Josephson junction
of each SQUID, and Ic is the critical current of the Josephson junction of each SQUID. From Eqs. (78) and (79), assuming that
all the terms proportional to λaxλ

b
y with a + b > 1 are negligible, we get [170]

LC
d2ΦA

n,m

dt2
+

L
R
dΦA

n,m

dt
+ LIc sin

(
2π
ΦA

n,m

Φ0

)
+ΦA

n,m = λx
(
ΦB

n,m +ΦB
n−1,m

)
+ λy

(
ΦC

n,m +ΦC
n,m−1

)
+ΦA

eff ,
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LC
d2ΦB

n,m

dt2
+

L
R
dΦB

n,m

dt
+ LIc sin

(
2π
ΦB

n,m

Φ0

)
+ΦB

n,m = λx
(
ΦA

n,m +ΦA
n+1,m

)
+ΦB

eff , (80)

LC
d2ΦC

n,m

dt2
+

L
R
dΦC

n,m

dt
+ LIc sin

(
2π
ΦC

n,m

Φ0

)
+ΦC

n,m = λy
(
ΦA

n,m +ΦA
n,m+1

)
+ΦC

eff .

whereΦA
eff = [1 − 2(λx + λy)]Φext ,ΦB

eff = (1 − 2λx)Φext , andΦC
eff = (1 − 2λy)Φext are the ‘‘effective’’ external fluxes.

Using the relations τ = ωLC t , φk
n,m =

Φk
n,m
Φ0

, and φext =
Φext
Φ0

, where ωLC = 1/
√
LC is the inductive–capacitive (LC) SQUID

frequency, the dynamic equations for the fluxes through the SQUIDs can be written in the normalized form

φ̈A
n,m + γ φ̇A

n,m + β sin
(
2πφA

n,m

)
+ φA

n,m = λx
(
φB
n,m + φB

n−1,m

)
+ λy

(
φC
n,m + φC

n,m−1

)
+ [1 − 2(λx + λy)]φext ,

φ̈B
n,m + γ φ̇B

n,m + β sin
(
2πφB

n,m

)
+ φB

n,m = λx
(
φA
n,m + φA

n+1,m

)
+ (1 − 2λx)φext , (81)

φ̈C
n,m + γφC

n,m + β sin
(
2πφC

n,m

)
+ φC

n,m = λy
(
φA
n,m + φA

n,m+1

)
+ (1 − 2λy)φext ,

where β and γ is the SQUID parameter and the loss coefficient, respectively, given by Eq. (13), and the overdots on φk
n,m

denote differentiation with respect to the normalized temporal variable τ .
In order to obtain the frequency spectrum of the SLiMM, we set γ = 0 and φext = 0 into Eqs. (81), and then we linearize

them using the relation β sin
(
2πφk

n,m

)
≃ βL φ

k
n,m, where βL = 2πβ , and substitute the trial solution

φk
n,m = Fk exp[i(Ωτ − κxn − κym)], (82)

where κx and κy are the x and y components of the two-dimensional, normalized wavevector κ, and Ω = ω/ωLC is the
normalized frequency. Then, the condition of vanishing determinant for the resulting algebraic system for the amplitudes
Fk gives

Ωκ = ΩSQ , Ωκ =

√
Ω2

SQ ± 2
√
λ2x cos2

(κx
2

)
+ λ2y cos2

(κy
2

)
, (83)

where only positive frequencies are considered. Eqs. (83) provide the linear frequency spectrum of the SLiMM. Thus, the
frequency band structure, as it is shown in the right panel of Fig. 29, exhibits two dispersive bands forming a Dirac cone
at the corners of the first Brillouin zone, and a flat band crossing the Dirac points. Note that the flat-band frequency ΩFB is
equal to the resonance frequency of individual SQUIDs in the linear limitΩSQ , i.e.,ΩFB = ΩSQ . We also note that the flat band
is an intrinsic property of this lattice in the nearest-neighbor coupling limit and thus it is not destroyed by any anisotropy
(i.e., when λx ̸= λy).

4.2. From flat-band to nonlinear localization

Eqs. (81) for the fluxes through the SQUIDs for the ‘‘free’’ SLiMM, i.e., that with γ = 0 and φext = 0, can be derived as the
Hamilton’s equations from the Hamiltonian

H =

∑
n,m

Hn,m, (84)

where the Hamiltonian density Hn,m, defined per unit cell, is given by

Hn,m =

∑
k

{
π

β

[(
qkn,m

)2
+
(
φk
n,m

)2]
− cos

(
2πφk

n,m

)}
−
π

β
{λx[φ

A
n,mφ

B
n−1,m + 2φA

n,mφ
B
n,m + φB

n,mφ
A
n+1,m] + λy[φ

A
n,mφ

C
n,m−1 + 2φA

n,mφ
C
n,m + φC

n,mφ
A
n,m+1]}, (85)

where qkn,m =
dφkn,m
dτ is the normalized instantaneous voltage across the Josephson junction of the SQUID in the (n,m)th unit

cell of kind k. Both H and Hn,m are normalized to the Josephson energy, EJ . The total energy H remains constant in time.
For the numerical integration of Eqs. (81) with γ = 0 and φext = 0, an algorithm that preserves the symplectic structure
of a Hamiltonian system should be selected. In the present case, a second order symplectic Störmer–Verlet scheme [323],
which preserves the total energyH to a prescribed accuracywhich is a function of the time-step h can be safely used. Periodic
boundary conditions are used for simplicity, and the SLiMM is initialized with a single-site excitation of the form

φk
n,m(τ = 0) =

{
Am, if n = ne and m = me;

0, otherwise , φ̇k
n,m(τ = 0) = 0, for any n,m, (86)

where Am is the amplitude, ne = Nx/2, me = Ny/2, and k = A, B or C . The magnitude of Am determines the strength of the
nonlinear effects. Four profiles of the Hamiltonian (energy) density Hn,m on the n − m plane for Am spanning four orders
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Fig. 30. Energy density profiles Hn,m plotted as a function of n and m at τ = 105 TSQ time units for Nx = Ny = 16, λx = λy = −0.02, and βL = 0.86. An
edge (C) SQUID is initially excited with amplitude (a) Am = 0.001; (b) 0.01; (c) 0.1; (d) 1.

of magnitude are shown in Fig. 30. For all those profiles the initially excited SQUID is of type C; the initialization with an
excitation of a type B SQUID gives the same results due to the isotropic coupling (λx = λy). Apparently, for both low and
high Am, those profiles exhibit localization; however, for an intermediate value of Am the corresponding profile seems to be
disordered and no localization takes place. Localization for low and high Am takes place due to differentmechanisms; for low
Am, the SLiMM is in the linear regime in which the localized state is due to the flat-band, while for high Am the localized state
is due to nonlinear effects. Importantly, no flat-band localization occurs for initially exciting an A type SQUID, in agreement
with the experiments on photonic Lieb lattices.

In order to roughly determine the boundaries between these three regimes, i.e., the linear, the intermediate, and the
nonlinear one, the energetic participation ratio

Pe =
1∑

n,m ϵ
2
n,m
, ϵn,m =

Hn,m

H
(87)

is used to quantify the degree of localization of the resulting flux states. Note that Pe measures roughly the number of excited
cells in the SLiMM; its values range from Pe = 1 (strong localization, all the energy in a single cell) to Pe = N , with N = NxNy
(the total energy is equally shared between theN SQUIDs). In Fig. 31, the equations for the SLiMM are integrated numerically
in time (for γ = 0 and φext = 0) with an initial single-site excitations of amplitude Am,i; the integration time is long enough
for the transients to die out, and for the system to be in the steady-state for a substantial time-interval. Then, the amplitude
of oscillation of the initially excited SQUID Am,c is retrieved, along with the frequencyΩosc of that oscillation (the oscillation
of the flux through the initially excited SQUID), and the Pe averaged over the steady-state integration time (denoted as ⟨Pe⟩).
The initial amplitude Am,i is increased in small steps and the calculations are repeated. That procedure is performed for both
a C type and an A type SQUID.

The results shown in Fig. 31, reveal clearly how the linear, intermediate, and nonlinear regimes are separated according
to the values of Am,i for the set of parameters used in the calculations. As it can be observed in Fig. 31(a), Am,c remains low
for low initial amplitudes Am,i < 0.15, while for Am,i > 0.15 the calculated amplitude Am,c increases linearly with increasing
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Fig. 31. (a) The amplitude Am,c of the flux φk
ne,me

of the initially excited SQUIDs with k = A (blue curve) and k = C (green curve) calculated at the end of
the integration time as a function of the initial excitation amplitude Am,i . Inset: Enlargement around low Am,i . The line Am,i/2 is shown in magenta color. (b)
The energetic participation ratio averaged over the steady-state integration time, ⟨Pe⟩, (transients were discarded) for the SQUID Lieb metamaterial when a
corner (A) SQUID (red curve) and an edge (C) SQUID (black curve) is initially excited, as a function of the initial excitation amplitude Am,i . (c) The oscillation
frequency Ωosc of the flux φk

ne,me
of the initially excited k = A (violet curve) and k = C (turquoise curve) SQUID as a function of the initial excitation

amplitude Am,i . Parameters: Nx = Ny = 16, λx = λy = −0.02, and βL = 0.86.

Am,i (Am,c ≃ Am,i). The behavior for Am,i > 0.15 is a result of the strong localization due to nonlinearities and it does not
depend on which kind of SQUID (edge or corner, A or B, C) is initially excited. However, a closer look to the two curves
for Am,i < 0.15 (inset), reveals significant differences, especially for Am,i < 0.05. Here, the calculated amplitude Am,c for
k = C follows the relation Am,c ≃ Am,i/2, indicating localization due to the flat band. This conclusion is also supported by
Figs.31(b) and 31(c). In Fig. 31(b), the energetic participation ratio averaged over the steady-state integration time ⟨Pe⟩, for
low values of Am,i attains very different values depending on which kind of SQUID is initially excited, A or C (⟨Pe⟩ ∼ 140
and ⟨Pe⟩ ∼ 10.5, respectively). That large difference is due to delocalization in the former case and flat-band localization
in the latter case. In the inset of Fig. 31(b), it can be observed that ⟨Pe⟩ for an initially excited C SQUID starts increasing
for Am,i > 0.05 indicating gradual degradation of flat-band localization and meets the ⟨Pe⟩ curve for an initially excited A
SQUID at Am,i ∼ 0.1. In Fig. 31(c), for Am,i < 0.15, the oscillation frequency Ωosc (either of an A kind or a C kind SQUID) is
around that of the linear resonance frequency of a single SQUID, ΩSQ . As it can be seen in the inset of Fig. 31(c), when a C
SQUID is initially excited, then Ωosc = ΩSQ for Am,i ≲ 0.075. However, when an A SQUID is initially excited, the frequency
Ωosc jumps slightly above and belowΩSQ irregularly, but it remains within the bandwidth of the linear frequency spectrum.
For Am,i > 0.15, the frequency Ωosc decreases with increasing Am,i, although it starts increasing again with increasing Am,i
at Am,i ∼ 0.8. In this regime, nonlinear localized modes of the discrete breather type are formed, which frequency and its
multitudes lie outside the linear frequency spectrum and depends on its amplitude, as it should be. Thus, for the parameter
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set used in these calculations, it can be inferred that flat-band localization occurs for initial amplitudes up to Am,i ≃ 0.05
(linear regime), while delocalization occurs in the interval 0.05 < Am,i < 0.15 (intermediate regime). For larger Am,i, strong
nonlinear localization with ⟨Pe⟩ ∼ 1 occurs (nonlinear regime).

Remarkably, flat-band localization occurs only when an edge SQUID (B or C) is initially excited. The excitation of a corner
(A) SQUID does not lead to excitation of flat-band modes and thus such an initial state delocalizes rapidly. Note that the
observed flat-band localization is not very strong as compared to the nonlinear localization because single-site excitations
of a B or C SQUID do not correspond to exact localized flat-band eigenmodes.

5. Quantum superconducting metamaterials

5.1. Introduction

In the 1980’s, A. Leggett envisioned the possibility of achieving quantum coherence in macroscopic circuits comprising
Josephson junctions; since then, the macroscopic quantum effects which are present in low-capacitance Josephson junction
circuits allowed for the realization of several kinds of superconducting, effectively two-level quantum systems capable of
storing information in binary form, i.e., superconducting quantum bits or qubits. These solid-state qubit devices are currently
at the heart of quantum information processing schemes, since they seem to satisfy the requirements for being the building
blocks of viable quantum computers [324–326]. Indeed, they found to exhibit relatively long coherence times, extremely
low dissipation, and scalability [327]. Several variants of superconducting qubits which relay on the Josephson effect [156]
and utilize either charge or flux or phase degrees of freedom have been proposed for implementing a working quantum
computer; the recently announced, commercially available quantum computer withmore than 1000 superconducting qubit
CPU, known as D-Wave 2XTM (the upgrade of D-Wave TwoTM with 512 qubits CPU), is clearly a major advancement in this
direction. A single superconducting charge qubit (SCQ) [328] at millikelvin temperatures can be regarded under certain
conditions as an artificial two-level ‘‘atom’’ in which two states, the ground and the first excited ones, are coherently
superposed by Josephson coupling. When coupled to an electromagnetic (EM) vector potential, a single SCQ does behave,
with respect to the scattering of EMwaves, as an atom in space. This has been confirmed for a ‘‘single-atom laser’’ consisted of
a superconducting charge qubit coupled to a transmission line resonator playing the role of a ‘‘cavity’’) [329]. Thus, it would
be anticipated that a periodic arrangements of such qubits would demonstrate the properties of a transparent material, at
least in a particular frequency band. The idea of buildingmaterials comprising artificial ‘‘atoms’’ with engineered properties,
i.e.,metamaterials, and in particular superconducting ones, is currently under active development. Superconducting quantum
metamaterials (SCQMMs) comprising a large number of qubits could hopefully maintain quantum coherence for times long
enough to reveal new, exotic collective properties.

The first SCQMMwhich was implemented recently, comprises 20 flux qubits arranged in a double chain geometry [154].
Furthermore, lasing in the microwave range has been demonstrated theoretically to be triggered in an SCQMM initialized
in an easily reachable factorized state [150]. The considered system comprised a large number of SCQs which do not
interact directly, placed in a one-dimensional (1D) superconducting waveguide. In this SCQMM, the lasing, i.e., a coherent
transition of qubits to the lower-energy (ground) state was triggered by an initial field pulse traveling through the system.
That type of dynamics is associated with the induced qubit–qubit coupling via their interaction with the EM field. The
decoherence time of realistic SCQs as well as the relaxation times of 1D superconducting resonators and superconducting
transmission lines (STLs) exceed significantly the characteristic times of energy transfer between the SCQs and the EM field,
even for weak SCQ–EM field interaction. Thus, decoherence and leakage can be neglected [144]. The lasing dynamics of that
SCQMM is also accompanied by two peculiar phenomena, i.e., the appearance of higher harmonics of the EM field and the
chaotization of SCQ subsystem dynamics. The lasing process in SCQMMs has been found to be quite robust against disorder
arising from unavoidable variations of the parameters of the SCQs in the fabrication process [330]. That disorder makes
the level-splittings of the SCQs as well as other SCQMM parameters to vary locally in a random way. For the investigation
of that process, a model Tavis–Cummings Hamiltonian was employed, which holds not only for real atoms but also for
artificial ones, such as superconducting flux and charge qubits. Disordered SCQMMs comprising superconducting flux qubits
with randomly varying excitation frequencies in a microwave resonator have been also investigated with a model Tavis–
Cummings Hamiltonian which contained a qubit–qubit interaction term [331]. It is demonstrated that photon phase-shift
measurements allow to distinguish individual resonances in that flux qubit metamaterial with up to a hundred qubits.
Numerical simulations of the phase-shift as a function of external flux (which modifies the qubit excitation energies),
using exact diagonalization of the Hamiltonian in a single excitation basis, are in agreement with recent experimental
results [154]. Further theoretical studies have revealed the emergence of collective quantum coherent phenomena using an
approach borrowed from mesoscopic physics [149]. It is demonstrated that the chain of N qubits, incorporated into a low-
dissipation resonant cavity, exhibits synchronized dynamics, even though the energy splittings ∆i and thus the excitation
frequencies ωi = ∆i/h̄ are different from one qubit to the other. Those quantum coherent oscillations are characterized by
two frequencies, ω1 = ∆̄/h̄ and ω2 = ω̃R where ∆̄ = (1/N)

∑N
i=1∆i with ω̃R being the resonator frequency ‘‘dressed’’ by the

interaction. In a similar SCQMM, i.e., a charge qubit array embedded in a low-dissipative resonator, various equilibrium
photon states were investigated [332]. When the photon energy of the resonator h̄ω0 is much smaller than the energy
splitting of qubits ∆ (identical qubits have been considered), a second order phase transition is obtained in the state of
photons. Specifically, at T > T ⋆ (high temperatures, with T ⋆ being the transition temperature) the photon state is incoherent.
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At T < T ⋆ (low temperatures), however, coherent states of photons with two different polarizations occur in such a SCQMM.
Interestingly, these two macroscopic coherent states of photons have equal energies, but they are separated by a barrier.
Different photon states manifest themselves as resonant drops in the frequency-dependent transmission coefficient D(ω);
thus, incoherent and coherent photon states display a single drop and three drops, respectively, in their D(ω). Moreover,
the resonant structure of D(ω) in the latter case provides direct evidence of macroscopic quantum oscillations between two
different coherent states of photons. Quantum synchronization has been also demonstrated theoretically for a disordered
SCQMM (inwhich the energy splitting of the ith qubit is∆i) comprising an array of flux qubits (3-Josephson junction SQUIDs)
which is coupled to a transmission line [333].

Also, remarkable quantum coherent optical phenomena, such as self-induced transparency [334] (SIT) and Dicke-type
superradiance [335] (collective spontaneous emission, SRD), occur during light-pulse propagation in SCQMMs comprising
SCQs [151]. The occurrence of the former or the latter effect solely depends on the initial state of the SCQ subsystem.
Specifically, in self-induced transparency (superradiance) all the SCQs are initially in their ground (excited) state; such
an extended system exhibiting SIT or SRD effects is often called a coherent amplifier or attenuator, respectively. These
fundamental quantum coherent processes have been investigated extensively in connection to one- and two-photon
resonant two-level systems. It is demonstrated that SIT or SRD electromagnetic pulses propagating in the SCQMM induce to
that quantum coherence in the form of ‘‘population inversion’’ pulses, which move together with the SIT or SRD EM pulses at
the same speed. The experimental confirmation of such quantum coherence effects in SCQMMs may open a new pathway
to potentially powerful quantum computing. Superradiant effects have been recently observed in quantum dot arrays [336]
and spin–orbit coupled Bose–Einstein condensates [337]. These findings suggest that these systems can radiatively interact
over long distances.

5.2. Superconducting qubits

In the past twenty years, impressive progress has been achieved both experimentally and theoretically in superconduct-
ing quantum bits (qubits), which comprise Josephson junctions. Those superconducting qubits have opened a new research
area with many potential applications in quantum-information processing. The Josephson junctions [156], which are
equivalent to nonlinear inductors, provide strong nonlinearity to the superconducting qubits; this is a desired property for
designing effectively two-level systems, as we discuss below. The superconducting qubits are essentially macro-mesoscopic
devices which enter into the fully quantum regime at milli-Kelvin temperatures; such low temperatures are needed for the
superconducting qubits to maintain their quantum states. In close analogy to natural atoms, the superconducting qubits
have discrete energy levels and therefore can be regarded as artificial atoms. In contrast to natural atoms, however, their
properties (e.g., their energy levels) as well as the coupling between them can be engineered and/or adjusted by external
fields. Here, we briefly present the basics for superconducting qubits. A basic requirement for the superconducting qubits
to function as artificial two-level systems (i.e., bits) is the nonlinearity, which differentiates the energy spacing between
sequential energy levels. As far as that spacing is concerned, the Josephson junctions play an important role as highly
nonlinear elements. Moreover, Josephson junctions have negligibly small energy dissipation, which is yet another desired
property for a superconducting qubit component. From the two celebrated Josephson relations discussed in Section 2.1
(Eq. (1)) it can be easily deduced that an ideal Josephson junction acts as a nonlinear inductance

LJ =
h̄

2eIc cosφJ
, (88)

whose value may even become negative. In Eq. (88), h̄ is the Planck’s constant divided by 2π , e is the electron’s charge, Ic
is the critical current which characterizes the Josephson junction, and φJ is the gauge-invariant Josephson phase which has
been discussed in Section 2.1.

In an electrical equivalent circuit consideration of superconducting qubits, it is exactly that equivalent Josephson
inductance LJ that provides the desired nonlinearity. Thus, in a given superconducting qubit, the two lowest energy levels
can be selected to form an effectively two-level system (a bit), appropriate for quantum information processing. There are
three basic types of superconducting qubits comprising Josephson junctions, which are usually operating at frequencies in
the microwave regime and rely on different ‘‘degrees of freedom’’, i.e., either on charge, or flux, or phase. They are classified
by the ratio of the Josephson energy to the charging (capacitive) energy

εq =
EJ
EC
, where EJ =

h̄Ic
2e
, EC =

e2

2CJ
. (89)

In Eq. (89), EJ and EC denote the Josephson and charging energy, respectively, CJ denotes the capacitance of the Josephson
junction. The quantized superconducting qubits are described by the canonically conjugate variables φJ , i.e., the gauge-
invariant Josephson phase, and the number of Cooper pairs n. Those variables satisfy the commutation relation [φJ , n] = i
and obey theHeisenberg uncertainty principle∆φJ∆n ≥ 1. It is important to note that the operator n has integer eigenvalues
whereas φJ is an operator corresponding to the position of a point on the unit circle (an angle modulo 2π ). For large enough
systems with n ≫ 1, the number operator n can be replaced by −i∂/∂φJ . The three basic types of superconducting qubits,
i.e., phase, flux, and charge qubits are distinguished by the relations between the parameters EC , EJ , and the energy difference
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between the two levels h̄ω0, with ω0 =
√
2ECEJ/h̄. The three basic types of qubits have been described in great detail in

several excellent review articles [327,338–341]. Therefore, here we only briefly refer to them.
Charge qubits. The prototypical charge qubit (also called Cooper pair box) was the first to be described theoretically.

Superconducting charge qubits (SCQs) are usually formed by small superconducting islands with n Cooper pairs grounded
through a Josephson junction. A gate voltage Vg can be applied to that island through a (gate) capacitance Cg , in order to
control the spacing between the energy-levels of the SCQ. Then, for a non-zero Vg , the charging energy is EC =

e2
2(CJ+Cg )

, with
CJ being the capacitance of the Josephson junction, and ng = CgVg/(2e) is the gate-charge number. It can be shown that the
Hamiltonian of that device is

H = EC
(
n − ng

)2
− EJ cos(φJ ). (90)

The eigenenergies and eigenfunctions of the Hamiltonian Eq. (90) can be calculated in terms of special functions which are
known with arbitrary precision. Note that the eigenspectrum can be modified either by varying ng or EJ . Let us now limit
ourselves to the two lowest levels of the box. Then, near the degeneracy point (optimal point) ng = 1/2, where the two
charge states |n = 0⟩ and |n = 1⟩ (which differ by a single Cooper pair) have equal electrostatic energy, the Hamiltonian
Eq. (90) can be reduced to

Hq = −Ez (σz + Xcσx) , (91)

where σx and σz are the Pauli spin operators. The eigenstates of Hamiltonian (91) are coherent superpositions of the states
|n = 0⟩ and |n = 1⟩, i.e., they are of the form (|n = 0⟩± |n = 1⟩)/

√
2. In the limit EC ≫ EJ , in which the charging behavior of

the capacitance dominates, we have that Ez = EJ/2 and Xc = 2(EC/EJ )[(1/2)ng ]. Themain disadvantage of the charge qubit is
its very strong sensitivity to charge noise, which can be mitigated to some extent by operating the qubit in the intermediate
regime EJ ≲ EC .

Phase qubits.- Phase qubits operate in the ‘‘phase regime’’ in which the Josephson term dominates the Hamiltonian (90),
i.e., when EC ≲ EJ . They consist of a single Josephson junction which is biased by an external current Ib. The Hamiltonian of
the superconducting phase qubit can be written as

H = −EC∂2φJ − EJ cos(φJ ) −
IbΦ0

2π
φJ ≡ −EC∂2φJ − EJ

(
cos(φJ ) +

Ib
Ic

)
, (92)

which is the Hamiltonian of a quantum particle in a tilted washboard potential. The phase qubit operates typically in the
subcritical regime (in practice, when Ib ≃ 0.95Ic −0.98Ic), so that only a few quantized levels remain in each local minimum
of the Josephson potential UJ = −EJ

(
cos(φJ ) +

Ic
Ib

)
. The tunneling probability out of the lowest two levels is very small, and

thus these can be taken as qubit states |0⟩ and |1⟩. For Ib ≃ Ic we have that φJ ≃ π/2 and the Josephson potential can be
approximated by

UJ = EJ

[(
1 −

Ic
Ib

)
φJ −

1
6
φ3
J

]
. (93)

The classical oscillation frequency at the bottom of the well (so-called plasma oscillation) is given by

ωp = ω0

[(
1 −

Ib
Ic

)2
]1/4

. (94)

Quantum-mechanically, energy levels can be found for the potential in Eq. (93) with non-degenerate spacings. The first
two levels, which have a transition frequency ω01 ≃ 0.95ωp, can be used for qubit states. In practice, ω01/(2π ) falls in the
5–20 GHz range. Defining∆I ≡ Ib − Ic , the phase qubit Hamiltonian is given by

Hq =
h̄ω01

2
σz +

√
h̄

2ω01C
∆I (σx + χσz) , (95)

where χ =

√
h̄ω01
3∆U ≃ 1/4 for typical operating parameters, with∆U =

2
√
2

3 Ic
(
1 −

Ic
Ib

)3/2
.

Flux qubits. Another possibility to realize a qubit in the limit EJ ≫ EC is to take advantage of the degeneracy between two
current-carrying states of an rf SQUID. The Hamiltonian for this system can be written as

H = −EC∂2φJ − EJ cos(φJ ) +
1
2
EL
(
φJ − φext

)2
, (96)

where φext = 2π Φext
Φ0

is the reduced flux through the loop of the rf SQUID due to an external magnetic field, and EL =
Φ2
0

2πL
is the inductive energy due to the self-inductance L of the rf SQUID. The potential energy is in this case formed by the last
two terms in the Hamiltonian Eq. (96). For φext ≃ π , the potential of the rf SQUID has two almost degenerate minimums.
The lowest energy states correspond to a persistent current circulating in the loop of the rf SQUID in opposite directions,
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Fig. 32. Schematic drawing of a superconducting quantum metamaterial comprising charge qubits. (a) An infinite chain of identical charge qubits
periodically loaded in a superconducting transmission line (STL). Each qubit is a tiny superconducting island that is connected to the electrodes of the
STL through two Josephson junctions, formed in the regions of the insulating (dielectric) layers (blue). The propagating electromagnetic vector potential
pulse is also shown schematically and out of scale. (b) Side view of the SCQMM in which the relevant geometrical parameters and the field orientations are
indicated. (c) A single unit cell of the SCQMM, in which the control circuitry for each individual charge qubit is shown. The gate potential Vg is applied to a
superconducting charge qubit through the gate capacitor Cg .

and they can be conveniently used as the |0⟩ and |1⟩ states of the flux qubit. Tunneling between the two potential wells is
enabled by the first term in Eq. (96). Then, in the {|0⟩, |1⟩} subspace, the effective flux qubit Hamiltonian is

H = −
ε

2
σz +

∆

2
σx, (97)

where ε ∝ ⟨1|Hq|1⟩ − ⟨0|Hq|0⟩ is the energy bias between the two levels (level splitting or ‘‘gap’’), and ∆ ∝ ⟨0|Hq|1⟩ is
the tunneling amplitude. For φext = π , i.e., exactly on the degeneracy point, we have that ε = 0 and the eigenstates of the
Hamiltonian Eq. (97) are again of the form (|0⟩ ± |1⟩) /

√
2.

5.3. Self-induced transparency, superradiance, and induced quantum coherence

5.3.1. Description of the model system
Consider an infinite, one-dimensional (1D) periodic array comprising Superconducting Charge Qubits (SCQs). That array

is placed in a Superconducting Transmission Line (STL) consisting of two superconducting strips of infinite length [144,148],
as shown in Fig. 32(a); each of the SCQs, in the form of a tiny superconducting island, is connected to each bank of the STL
by a Josephson junction (JJ). Control circuitry can be added to that structure, so that each individual SCQ is coupled to a
gate voltage source Vg through a gate capacitor Cg (Fig. 32(c)). Thus, local control of the SCQMM can be achieved by altering
independently the state of each SCQ [142]. The SCQs exploit the nonlinearity of the Josephson effect [156] and the large
charging energy resulting from nanofabrication to create artificial mesoscopic two-level systems. A propagating EM field in
the STL gives rise to indirect interactions between the SCQs, which are mediated by its photons [342]. Those interactions are
of fundamental importance in quantum optics, quantum simulations, and quantum information processing, as well. Since
the qubits can be in a coherent superposition of quantum states, such a system demonstrates interesting effects, e.g., it may
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behave as a ‘‘breathing’’ photonic crystal with an oscillating band gap [144]. That gap depends on the quantum state of the
qubits, that makes this system a quantum photonic crystal. Thus, a variation of the microscopic quantum state of the qubits
will change the macroscopic EM response of the system. The key ingredient of these effects is that the optical properties of
the Josephson transmission line are controlled by the quantum coherent state of the qubits. The progress on the emerging
field of microwave photonics with superconducting quantum circuits has been reviewed in Ref. [343]. Below we discuss
two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, which
may occur during light-pulse propagation in the abovementioned SCQMM.Moreover, it appears that the propagating pulses
induce quantum coherence in the chain of SCQs, in the form of ‘‘population inversion’’ pulses.

In the following, the essential building blocks of the SCQMM model are summarized in a self-contained manner, yet
omitting unnecessary calculational details which are presented in the Appendix. The system of units in Refs. [144,148] is
used from here to the end of the article. An EM vector potential pulse A⃗ = Az(x, t)ẑ can propagate in the SCQMM structure,
which extends over the x−direction, and couples to the SCQs. Then, the energy per unit cell of the SCQMM–EM vector
potential pulse can be readily written in units of the Josephson energy EJ =

Φ0Ic
2πC , with Φ0, Ic and C being the magnetic flux

quantum, the critical current of the JJ, and the capacitance of the JJ, respectively, as [144,148]

H =

∑
n

{[
ϕ̇2
n − 2 cosϕn

]
+
[
α̇2
n + β2(αn+1 − αn)2

]
+ [2 cosϕn(1 − cosαn)]

}
, (98)

where ϕn is the superconducting phase on the nth island, αn = 2πdAx,n/Φ0 is the normalized and discretized EM vector
potential in the center of the nth unit cell, with d being the separation between the electrodes of the STL, β =

1√
8π ldEJ

Φ0
2π ,

and the overdots denote differentiation with respect to the temporal variable t . The three terms in the square brackets
in Eq. (98) represent the energy of the SCQs (equivalently the energy of the two JJs in an EM vector potential having the
orientation shown in Fig. 32(b)), the energy of the EM field, and their interaction energy, respectively.

For the discretization of the EM vector potential, it is assumed that the wavelength λ of the carrier EM field with vector
potential Az(x, t) is much larger that all the other characteristic lengths of the SCQMM structure, i.e., that λ ≫ ℓ, d, with ℓ
being the distance between neighboring SCQs. Then, the EM potential can be regarded to be approximately constant within
a unit cell, so that in the center of the nth unit cell Az(x, t) ≃ Az,n(t) or equivalently α(x, t) ≃ αn(t). Note that the coupling
between the SCQs and the EM field is realized from the requirement of having gauge-invariant Josephson phase in each of
the junctions.

5.3.2. Second quantization and reduction to Maxwell–Bloch equations
The quantization of the SCQ subsystem requires the replacement of the classical variables ϕn and ϕ̇n by the corresponding

quantum operators ϕ̂n and −i(∂/∂ϕ̂n), respectively. While the EM field is treated classically, the SCQs are regarded as two-
level systems, so that only the two lowest energy states are retained; under these considerations, the second-quantized
Hamiltonian corresponding to Eq. (98) in the semi-classical approximation is

H =

∑
n

∑
p

Ep(n)a†
n,pan,p +

∑
n

[
α̇2
n + β2(αn+1 − αn)2

]
+ 4

∑
n

∑
p,p′

Vp,p′ (n)a†
n,pan,p′sin2 αn

2
, (99)

where p, p′
= 0,1, E0 and E1 are the energy eigenvalues of the ground and the excited state, respectively, the operator

a†
n,p (an,p) excites (de-excites) the nth SCQ from the ground to the excited (from the excited to the ground) state, and

Vp,p′ =
∫
dϕΞ∗

p (ϕ) cosϕΞp(ϕ) are the matrix elements of the effective SCQ–EM field interaction. The basis states Ξp can
be obtained by solving the single-SCQ Schrödinger equation (−∂2/∂ϕ2

− Ep + 2 cosϕ)Ξp = 0. In general, each SCQ is in
a superposition state of the form |Ψn⟩ =

∑
pΨn,p(t)a

†
n,p|0⟩. The substitution of |Ψn⟩ into the Schrödinger equation with the

second-quantized Hamiltonian Eq. (99), and the introduction of the Bloch variables

Rx(n) = Ψ ⋆
n,1Ψn,0 + Ψ ⋆

n,0Ψn,1, Ry(n) = i(Ψ ⋆
n,0Ψn,1 − Ψ ⋆

n,1Ψn,0), Rz(n) = |Ψn,1|
2
− |Ψn,0|

2, (100)

provides the re-formulation of the problem into the Maxwell–Bloch equations

Ṙx(n) = −

[
∆+ 8D sin2 αn

2

]
Ry(n), Ṙy(n) =

[
∆+ 8D sin2 αn

2

]
Rx(n) − 8µ sin2 αn

2
Rz(n),

Ṙz(n) = +8µ sin2 αn

2
Ry(n),

(101)

that are nonlinearly coupled to the resulting equation for the normalized EM vector potential

α̈n +
{
Ω2

+ χ [µRx(n) + DRz(n)]
}
sinαn = β2δan, (102)

where

δαn = αn−1 − 2αn + αn+1, D =
(V11 − V00)

2χ
, Ω2

=
(V00 + V11)

2
, µ =

V10

χ
=

V01

χ
, ∆ = ϵ1 − ϵ0 ≡

(E1 − E0)
χ

,

(103)
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with χ = h̄ωJ
EJ
. In Eqs. (101) and (102), the overdots denote differentiation with respect to the normalized time t → ωJ t ,

in which ωJ =
eIc
h̄C is the Josephson frequency and e, h̄ are the electron charge and the Planck’s constant divided by 2π ,

respectively.

5.3.3. Approximations and analytical solutions
For weak EM fields, |αn| ≪ 1 for any n, the sine term can be linearized as sinαn ≃ αn. Then, by taking the continuum

limit of Eqs. (101) and (102), using the relations αn(t) → α(x, t) and Ri(n; t) → Ri(x; t) (i = x, y, z), a set of simplified, yet
still nonlinearly coupled equations is obtained, similar to those encountered in two-photon self-induced transparency (SIT) in
resonant media [344]. Further simplification can be achievedwith the slowly varying envelope approximation (SVEA), using
the ansatz α(x, t) = ε(x, t) cosΨ (x, t) for the EM vector potential, where Ψ (x, t) = kx − ωt + φ(x, t) and ε(x, t), φ(x, t) are
the slowly varying pulse envelope and phase, respectively, with ω and k being the frequency of the carrier wave of the EM
pulse and its wavenumber in the STL, respectively. The dispersion relation (see the Appendix for the derivation)

k = ±

√
ω2 −Ω2

β
, (104)

provides the dependence of k on ω or vice versa. In the absence of the SCQ chain, the EM pulse propagates in the STL with
speed β . At the same time, Eqs. (101) for the Bloch vector components are transformed according to

Rx = rx cos(2Ψ ) + ry sin(2Ψ ), Ry = ry cos(2Ψ ) − rx sin(2Ψ ), Rz = rz . (105)

Then, collecting the coefficients of sinΨ and cosΨ while neglecting the rapidly varying terms, and averaging over the phase
Ψ , results in a set of truncated equations. Further manipulation of the resulting equations and the enforcement of the two-
photon resonance condition∆ = 2ω, results in

ε̇ + cεx = −χ
µ

∆
εry, φ̇ + cφx = −χ

2D
∆

rz, (106)

where c =
β2k
ω

= 2 β
2k
∆

, and the truncated Maxwell–Bloch equations

ṙx = −2Dε2ry, ṙy = +2Dε2rx −
µε2

2
Rz, ṙz = +

µε2

2
ry, (107)

in which the n-dependence of the ri (i = x, y, z) is suppressed, in accordance with common practices in quantum optics.
Also, from Eqs. (107), the conservation law r2x + r2y + r2z = 1 can be obtained.

The ri can be written in terms of new Bloch vector components Si using the unitary transformation

rx = Sx cosΦ − Sz sinΦ, ry = Sy, rz = Sz cosΦ + Sx sinΦ, (108)

whereΦ is a constant angle which will be determined later. Using a procedure similar to that for obtaining the ri, we get

Ṡx = 0, Ṡy = −
1
2
Wε2Sz, Ṡz = +

1
2
Wε2Sy, (109)

where W =

√
(4D)2 + µ2 and tanΦ ≡ γ =

4D
µ
. The combined system of Eqs. (109) and (106) admits exact solutions of the

form ε = ε(τ = t − x/v) and Si = Si(τ = t − x/v), where v is the pulse speed. For the slowly varying pulse envelop, we
obtain

ε(τ ) = ε0

[
1 +

(
τ − τ0

τp

)2
]−

1
2

, (110)

where the pulse amplitude an its duration are given respectively by

ε0 =

√
8σ 2

∆

v

(c − v)
, τp =

{
2χ
σµ

∆

v

(c − v)

}−1

, (111)

with σ =
µ

W =
1√
1+γ 2

. The decoherence factor γ can be expressed as a function of the matrix elements of the effective

interaction between the SCQ subsystem and the EM field, Vij, as γ = 2 (V11−V00)
V10

that can be calculated when the latter are
known. Lorentzian propagating pulses of the form of Eq. (110) have been obtained before in two-photon resonant media
[345,346]; however, SIT in quantum systems has only been demonstrated in one-photon (absorbing) frequency gap media,
in which solitonic pulses can propagate without dissipation [347]. The corresponding solution for the population inversion,
Rz , reads

Rz(τ ) = ±

[
−1 +

(
ε(τ )
εM

)2
]
, (112)
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where εM =

√
8
∆

v
(c−v) , and the plus (minus) sign corresponds to absorbing (amplifying) SCQMMs; these are specified through

the initial conditions as

Rx(−∞) = Ry(−∞) = 0, Rz(−∞) = −1, ε(−∞) = 0, (113)

for absorbing SCQMMs, and

Rx(−∞) = Ry(−∞) = 0, Rz(−∞) = +1, ε(−∞) = 0, (114)

for amplifying SCQMMs. The initial conditions specified by Eqs. (113) (Eqs. (114)) ensure that before the arrival of the EM
pulse, all the SCQs are in their ground (excited) state in order to achieve absorption (amplification). Since the frequencyω has
been chosen to match the two-photon resonance, the wavevector k has been uniquely determined through the dispersion

relation Eq. (104) to be k = ±

√
∆2−4Ω2

2β , or, after replacements ofΩ and∆ from Eq. (103),

k = kr = ±

√(
E1−E0
χ

)2
− 4 V00+V11

2

2β
(115)

Obviously, the propagation of EM pulses in the SCQMM is only possible for real k. The requirement for the wavenumber k to
be real results in the relation

2χ2(V11 + V00) < (E1 − E0)2, (116)

which provides a necessary condition for pulse propagation in the SCQMM. Note that the propagation condition Eq. (116)
contains only qubit-related parameters, i.e., the diagonal matrix elements V00, V11 and the energy levels E0 and E1, whose
values can be in principle tailored during fabrication or tuned in real time by the gate voltages Vg .

The corresponding velocity–amplitude relation of a propagating pulse in the SCQMM under the two-photon resonance
condition reads

v = c
[
1 ± χ

8σ 2

∆ε20

]−1

, (117)

where the value of c is that at the two-photon resonance ω = ∆/2, i.e., c = cr = 2β2kr/∆. A relation between the pulse
amplitude and its duration can be obtained by combining Eqs. (111); the resulting relation is then ε20τp = 4/(χW ), which
can be used to transform Eq. (117) into a velocity-duration expression. From Eq. (117), it is obvious that cr = 2β2kr/∆ plays
the role of a limiting velocity, since v → c for ε0 → ∞. Thus, the velocity cr sets an upper (lower) bound on the pulse
velocity in absorbing (amplifying) SCQMM structures. It is generally lower than the corresponding one for two-photon SIT
or SRD in ordinary media, β . Moreover, cr depends only on the qubit parameters, so that its value can be also tailored during
fabrication or tuned by the gate voltages Vg .

In Fig. 33, several velocity–amplitude curves v/β as a function of ε0 are shown along with profiles of the envelops of the
EM vector potential pulse (ε/εM )2 and the population inversion Rz(n) as functions of the slow variable (τ/τM ), τM =

∆
2χµ

c−v
v

,
in a frame of reference which is moving with velocity v, both for absorbing and amplifying SCQMMs. In all subfigures, the
horizontal magenta-solid lines indicate the limiting velocity in ordinary amplifying and absorbing mediums, v = β , while
the black-solid lines indicate the limiting velocity in amplifying and absorbing SCQMMs, v = cr < β . All the curves exhibit
a hyperbolic dependence; moreover, the corresponding curves for ordinary mediums and SCQMMs are close to each other,
especially for low ε0. The major difference is that the limiting velocity in SCQMMs is always lower than the corresponding
one in ordinary mediums. Moreover, that limiting velocity in SCQMMs is parameter-dependent as mentioned above; this
becomes clear by comparing curves of the same color (e.g., the red-dashed curves) in Fig. 33(a) and (c), for which the ratio
Ω/∆ is 0.15 and 0.26, respectively, and provides v/β ≃ 0.95 and≃0.88. The limiting velocity cr for SCQMMs can be reduced
further with increasing further the ratio Ω/∆. Thus, parameter engineering for the SCQMM can slow down the speed of
the pulses v at the desired level for high enough amplitudes ε0. Effective control of v in SCQMMs could also be achieved in
principle by an external field [348] or by real time tuning of the qubit parameters through the gate voltages Vg , as mentioned
above. That ability to control the flow of ‘‘optical’’, in the broad sense, information may have technological relevance to
quantum computing [349]. The effect of non-zero γ factor become apparent by comparing again curves of the same color
in Fig. 33(a) and (b), for which γ = 0 and 2, respectively (the rest of the parameters are the same). The velocity–amplitude
curves approach their limiting value for lower ε0 with increasing γ . The same conclusion can be drawn by comparing curves
of the same color in Fig. 33(c) and (d). The effect of non-zero γ is also revealed in the insets of Fig. 33(a) and (b); in each inset,
the left (right) panel is for absorbing (amplifying) SCQMMs. In both cases, the amplitudes of the pulse envelops for γ = 2
are about four times smaller than those for γ = 0. Thus, only for γ = 0, i.e., for V00 = V11, can the envelops of the EM vector
potential pulses and the population inversion pulses (either for absorbing or for amplifying SCQMMs) attain their maximum
amplitude value.

Note that we have not been concernedwith decoherence effects due to dephasing and energy relaxation in the SCQs. This
is clearly an idealization which is partly justified as long as the coherence time exceeds the wave propagation time across a



52 N. Lazarides, G.P. Tsironis / Physics Reports 752 (2018) 1–67

Fig. 33. The normalized pulse velocity v/β–amplitude ε0 relation in two-photon superradiant (TPSRD, amplifying) and two-photon self-induced
transparent (TPSIT, absorbing) superconducting quantum metamaterials (SCQMMs) and pulse envelops. In (a)–(d), the normalized pulse velocity v/β is
plotted as a function of the electromagnetic (EM) vector potential pulse amplitude ε0 and compared with the corresponding curves for ordinary amplifying
(brown-dotted curves) and absorbing (green-dotted curves) mediums. The horizontal magenta-solid (resp. black-solid) lines indicate the limiting velocity
in ordinary amplifying and absorbing mediums, v/β = 1 (resp. amplifying and absorbing SCQMMs, v = cr < β). (a) V00 = V11 = 1, V01 = V10 = 0.8,
χ = 1/5, E1 − E0 = 3 (γ = 0 and Ω/∆ = 0.15). Left Inset: The envelop of the EM vector potential pulse (ε/εM )2 and the population inversion Rz (n)
profiles as a function of τ/τM for TPSIT (absorbing) SCQMMs. Right Inset: Same as in the left inset for TPSRD (amplifying) SCQMMs. (b) V00 = 0.6, V11 = 1.4,
V01 = V10 = 0.8, χ = 1/5, E1 − E0 = 3 (γ = 2 and Ω/∆ = 0.15). Left Inset: The envelop of the EM vector potential pulse (ε/εM )2 and the population
inversion Rz (n) profiles as a function of τ/τM for TPSIT (absorbing) SCQMMs. Right Inset: Same as in the left inset for TPSRD (amplifying) SCQMMs. (c)
V00 = V11 = 3, V01 = V10 = 0.8, χ = 1/5, E1 − E0 = 3 (γ = 0 andΩ/∆ = 0.26). (d) V00 = 3, V11 = 3.8, V01 = V10 = 0.8, χ = 1/5, E1 − E0 = 3 (γ = 2
andΩ/∆ = 0.26).

relatively large number of unit cell periods (i.e., a large number of SCQs). In a recent experiment [350], a charge qubit coupled
to a strip line had a dephasing time in excess of 200 ns, i.e., a dephasing rate of 5 MHz, and a photon loss rate from the cavity
of 0.57MHz. Those frequencies are very small comparedwith the transition frequency of the considered SCQswhich is of the
order of the Josephson energy (i.e., a few GHz) [144,148]. Therefore, we have neglected such decoherence effects here. The
decoherence factor γ , which in Fig. 33(b) and (d) has been chosen according to the parameter values in [144], is not related
to either dephasing or energy relaxation. That factor attains a non-zero value whenever the diagonal matrix elements of the
effective SCQ–EM field interaction, V11 and V00, are not equal.

5.3.4. Numerical simulations
The above analytical predictions should be confirmed numerically, by integrating Eqs. (101) and (102). Any integration

algorithm such as a fourth order Runge–Kutta scheme with constant time-step can be used for that purpose. Using that
scheme, small time-steps, e.g.,∆t = 10−3, or even smaller are required to conserve up to high accuracy the total and partial
probabilities as the compound system of the SCQs and the EM vector potential evolve in time. For the numerical results
presented below, periodic boundary conditions have been assumed. Due to the Lorentzian shape (Lorentzian) of the EM
vector potential pulse and the population inversion pulse in the SCQ subsystem, very large systems with N = 213

= 8192
and N = 214

= 16,384 have been simulated to diminish as much as possible the effects from the ends (i.e., to avoid the
interaction of the pulse tail with itself). In some cases, it is necessary to simulate even larger systems, with N = 50,000.
In order to observe two-photon self-induced transparent (TPSIT) pulses an(t) and the induced population inversion pulses
Rz(n; t), the following initial conditions are implemented: for the former, the analytically obtained solution resulting for the
given set of parameters, while for the latter all the SCQs are set to their ground state, i.e., the state with eigenenergy E0. In
terms of the Bloch variables Ri, i = x, y, z, that initial condition is specified as:

Rx(t = 0) = Ry(t = 0) = 0, Rz(t = 0) = −1, (118)
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Fig. 34. (a) Snapshots of the induced population inversion pulse Rz (n; t), excited by the electromagnetic vector potential pulse an(t), whose corresponding
snapshots are shown in (b), for two-photon self-induced transparent (TPSIT, absorbing) superconducting quantum metamaterials. (b) Snapshots of the
corresponding electromagnetic vector potential pulse an(t). In both (a) and (b), the numerically obtained pulses are shown in blue color, while the analytical
solutions are shown in red color. Parameters: χ = 1/5, β = 6, V00 = V11 = 1, V01 = V10 = 0.8, E1 − E0 = 3, and v/c = 0.7. Only a small part of the
simulated array of SCQs is shown for clarity.

for any n = 1, . . . ,N . Then, the TPSIT pulses an(t) and Rz(n; t) exist for velocities less than the corresponding limiting velocity
for TPSIT media, i.e.,

v < cr = 2β2 kr
∆
. (119)

Recall that the last equation is valid only when the two-photon resonance condition ω = ∆/2 has been imposed. In Eq. (119),
the frequencyω of the carrier wave of the EM vector potential is fixed by the two-photon resonance condition (and thus it is
eliminated from the equation). On the other hand, the wavenumber of the carrier wave of the EM vector potential may vary
in an intervalwhich is restricted by the condition Eq. (116)which ensures that k is real. The integration of Eqs. (101) and (102)
in time and the inspection of the evolving profiles indeed reveal that the an(t) can propagate in the SCQMM structure, and
that at the same time, it is capable of exciting an Rz(n; t) pulse of similar shapewhich also propagates at the same speed v for
a substantial temporal window. In Fig. 34(a) and (b), several snapshots of the two-photon self-induced transparent (TPSIT)
propagating pulses Rz(n; t) and an(t), respectively, are shown, at instants differing by 20 time-units (the first snapshot is
taken at t = 20). Note that the snapshots are displaced vertically (to avoid overlapping) and that time increases downwards.
The numerical (analytical) results are shown in blue (red) color. In Fig. 34(a), the amplitude of the Rz(n; t) pulse gradually
grow to the expected maximum around unity in approximately 60 time-units; then, the pulse continues its course with
fluctuating amplitude for ∼ 160 more time-units, during which it moves at the same speed as the EM vector potential pulse
an(t) (Fig. 34(b)). However, due to the inherent discreteness in the SCQ chain and the lack of direct coupling between the
SCQs, the induced population inversion pulse Rz(n; t) splits at certain instants leaving behind small ‘‘probability bumps’’
which are pinned at particular SCQs. After the end of the almost coherent propagation regime, the Rz(n; t) pulse broadens
and slows-down until it stops completely. At the same time, thewidth of the an(t) pulse increases in the course of time due to
discreteness-induced dispersion. A comparisonwith the corresponding analytical expressions reveals fair agreement during
the almost coherent propagation regime, although both the Rz(n; t) and an(t) pulses travel slightly faster than expected from
the analytical predictions. The temporal variable here is normalized to the inverse of the Josephson frequency ωJ which for
typical parameter values is of the order of a few GHz [144]. Then, the almost coherent pulse propagation regime in the
particular case shown in Fig. 34 lasts for ∼160×10−9 s, or ∼160 ns, which is of the same order as the reported decoherence
time for a charge qubit in Ref. [350] (i.e., 200 ns).
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Fig. 35. (a) Snapshots of the induced population inversion pulse Rz (n; t), excited by the electromagnetic vector potential pulse an(t), whose corresponding
snapshots are shown in (b), for two-photon superradiant (TPSRD, amplifying) superconducting quantum metamaterials. (b) Snapshots of the electromag-
netic vector potential pulse an(t). In both (a) and (b), the numerically obtained pulses are shown in blue color, while the analytical solutions are shown in
red color. Parameters: χ = 1/5, β = 6, V00 = V11 = 1, V01 = V10 = 0.8, E1 − E0 = 3, and v/c = 0.7. Only a small part of the simulated array of SCQs is
shown for clarity.

The situation seems to be different, however, in the case of two-photon superradiant (SRD) pulses, as can be observed in
the snapshots shown in Fig. 35(a) and (b), for Rz(n; t) and an(t), respectively. Here, the lack of the direct interaction between
SCQs is crucial, since the SCQs that make a transition from the excited to their ground state as the peak of the an(t) pulse
passes by their location, cannot return to their excited states after the an(t) pulse has gone away. It seems, thus, that the
an(t) pulse excites a kink-like Rz(n; t) front that propagates along with it at the same velocity. It should be noted that the
common velocity of the Rz(n; t) kink and the an(t) pulse is considerably lower than the analytically predicted one, as it can
be observed in Fig. 35(a) and (b). Even more complicated behavioral patterns of two-photon SRD propagating pulses have
been also obtained [151]. The effect of non-zero γ factor on the Rz(n; t) and an(t) pulses is clearly revealed in Fig. 36. These
snapshots are taken at instants separated by 14 time-units, from t = 0 to t = 168. They are shifted downwards to avoid
overlapping, and only part of the array is shown for clarity. A small value of the factor γ (γ = 0.01) has practically negligible
effect on the Rz(n; t) and an(t) pulses (Fig. 36(a) and (b)). However, when γ increases (e.g., to γ = 0.1, as in Fig. 36(c) and
(d)), the amplitude of the envelop of the Rz(n; t) pulse decreases significantly. For even higher values of γ , the excitation of
Rz(n; t) pulses becomes impossible.

Thus, even for non-zero γ , an an(t) pulse is able to excite or induce Rz(n; t) pulse whose amplitude gradually increases
until it attains its maximum value; that value is close to but less than unity for a small but non-zero γ (e.g., for γ = 0.01
as in Fig. 36(a) and (b)). The induced Rz(n; t) pulse propagates along with the an(t) pulse with velocity v′. In Fig. 36(a), the
amplitude of the Rz(n; t) pulse reaches its maximum at t ≃ 70 time units; subsequently it evolves in time while it keeps its
amplitude almost constant for at least the next 56 time-units. After that, its amplitude starts decreasing until it is completely
smeared (not shown). During the time interval in which the amplitude of the Rz(n; t) pulse is close to (but less than) unity,
the SCQMM is considered to be in an almost coherent regime. Note that at about t = 84 a little bump starts to appear which
grows to a little larger one as time advances (‘‘probability bump’’). This probability bump, as well as that observed also in
Fig. 34(a) for a different parameter set which gives γ = 0, is immobile and its peak is located on a site around n ∼ 300. A
second such bump appears at n = 0 due to the initial ‘‘shock’’ of the qubit subsystem because of the sudden onset of the
an(t) pulse. A comparison of the numerical Rz(n; t) profiles with the analytical ones reveals that the velocity of propagation
v′, the same for the numerically obtained Rz(n; t) and an(t) pulses, (Fig. 36(a) and (b)), is slightly larger than the analytically
obtained one v (v′ > v). In Fig. 36(c) and (d), the diagonal effective matrix interaction elements Vij (i, j = 0,1) have been



N. Lazarides, G.P. Tsironis / Physics Reports 752 (2018) 1–67 55

Fig. 36. Snapshots of the induced population inversion pulse Rz (n; t) and the electromagnetic vector potential pulse an(t) in two-photon self-induced
transparent (TPSIT, absorbing) superconducting quantum metamaterials for a non-zero γ factor. (a) Snapshots of Rz (n; t) for γ = 0.01 (V00 = 0.998,
V11 = 1.002). (b) Snapshots of an(t) which excite the corresponding Rz (n; t) pulses in (a). (c) Snapshots of Rz (n; t) for γ = 0.1 (V00 = 0.98, V11 = 1.02).
(d) Snapshots of an(t) which excite the corresponding Rz (n; t) pulses in (c). The other parameters are: χ = 1/4.9, β = 6, V01 = V10 = 0.7, E1 − E0 = 3,
and v/c = 0.7. In (a)–(d), the numerically obtained pulses are shown in blue color, while the analytical solutions are shown in red color. Only a small part
of the simulated array of SCQs is shown for clarity.

chosen so that the factor γ has the value of 0.1. That value is obtained by choosing, specifically, V00 = 0.98, V11 = 1.02, and
V01 = V10 = 0.7, and it is already high enough to Stark-shift considerably the energy levels of the SCQs. The effect of γ = 0.1
becomes apparent by comparing Fig. 36(a) and (b), with Fig. 36(c) and (d), respectively. Remarkably, the EM vector potential
pulse an(t) does not seem to be affected significantly. However, the numerically obtained, induced population inversion pulse
Rz(n; t) has much lower amplitude compared with that of the analytically predicted form which is only slightly affected by
the high value of γ . Note that the speed of the Rz(n; t) pulse is the same as that in the case of lower value of γ (γ = 0.01).
Even the unwanted ‘‘probability bumps’’ in Fig. 36(a) and (c), for γ = 0.01 and 0.1, respectively, appear at about the same
locations with almost the same amplitude and shape.

6. Summary

SQUIDs metamaterials exploit geometry, superconductivity, and the Josephson effect, to exhibit extraordinary metama-
terial properties and very rich dynamic behavior. Many aspects of their behavior have been investigated both theoretically
and experimentally; properties such as negative diamagnetic permeability, wide-band tunability of the resonance either
by a magnetic field or the temperature, fast switching between multistable states, broad-band self-induced transparency,
and coherent oscillations, have been experimentally observed. Moreover, some of these properties have been numerically
confirmed. Further theoretical results, which rely primarily on numerical simulations, have predicted the existence of
nonlinearly localized states in the form of discrete breathers, the existence the counter-intuitive chimera states, the
nonlinear band opening, and the existence of flat-band localizedmodes, the latter in SQUIDmetamaterials on Lieb lattices. All
the above results presented in this reviewhave been obtained in the classical regime, although even those phenomenological,
equivalent circuit models used to simulate SQUID metamaterials, encompass macroscopic quantum effects. In the quantum
regime, a particular paradigmatic model describing an array of superconducting charge qubits periodically loaded in a
superconducting transmission line, has been reviewed. That system could be also regarded as an array of SQUIDs, which
SQUIDs however are strongly coupled to each other through direct conducting paths. For that superconducting quantum
metamaterial, the possibility for the opening of an oscillating photonic band gap, the propagation of self-induced transparent
and superradiant pulses, and the induction of quantum coherence in the qubit chain by the propagating pulses, has been
theoretically demonstrated.

The presented review cannot be exhaustive on SQUIDmetamaterials and quantum superconductingmetamaterials, since
that area of the field of metamaterial research evolves very fast; experiments on both classes of systems are going on that
will perhaps reveal further surprising results. There was an attempt to guide the reader through the main results in this
area, and to stress that the presented properties of the SQUID metamaterials are to a large extent a result of nonlinearity of
their elementary units, i.e., the individual SQUIDs. Indeed, substantial nonlinearity leads to multistability in a single SQUID
for driving frequencies close to its resonance. That resonance can be tuned by a dc and/or a harmonic field; moreover, the
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amplitude of the latter also determines the strength of the nonlinearity. The SQUID metamaterials, inherit to a large degree
the properties of their elements; moreover, the complexity of their dynamics increases immensely in the multistability
region with increasing the number of SQUIDs. That makes possible the appearance of collective states such as the chimera
states. The nonlinearity of individual SQUIDs is also responsible for the localization of energy leading to the generation
of discrete breathers which exist due to a delicate balance between intrinsic dissipation and incoming power from the
external field (dissipative breathers). The flat-band localized modes, on the other hand, may exist due to the particular
lattice geometry (Lieb lattice), in the linear regime (very low field intensities).

For the superconducting quantummetamaterials, the Josephson nonlinearity is again crucial in order to form a particular
type of a superconducting qubit, i.e., an effectively two-level system (by neglecting all the other, higher energy states).
Those qubits, couple through their Josephson junction(s) to the magnetic component of the electromagnetic field of a pulse
launched form one end; that interaction allows for the generation of important quantum optical effects, such as self-induced
transparency and superradiance. Moreover, the propagating pulses, which are shaped to acquire Lorentzian profiles, are able
to induce quantum coherence in the form of population inversion pulses of the same shape in the qubit chain. Also, proper
design of the qubit parameters allows for controlling the (common) speed of the propagating pulses in the superconducting
quantum metamaterial, which is not possible in a natural material.
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Appendix. Derivation of the Maxwell–Bloch–sine–Gordon equations

A.1. Quantization of the qubit subsystem

Consider an infinite number of superconducting charge qubits (SCQs) of the form ofmesoscopic superconducting islands,
periodically loaded in a transmission line (TL) that consists of two superconducting plates separated by distance d. The
center-to-center distance between the qubits, ℓ, is of the same order of magnitude as d. The SCQs are connected to each
electrode of the TL with a Josephson junction (JJ). Assume that an electromagnetic (EM) wave corresponding to a vector
potential A⃗ = Az(x, t)ẑ which propagates along that superconducting TL, in a direction parallel to the electrodes and
perpendicular to the direction of propagation of the EMwave. In the following it is assumed that the wavelength λ of the EM
field is much larger than the other length scales such as the separation of the electrodes d and the distance between SCQs
ℓ, i.e., λ ≫ ℓ, d. Then, the magnitude of the EM vector potential component Az(x, t) is approximately constant within a unit
cell, so that Az(x, t) ≃ Az,n(t). The Hamiltonian of the compound qubit array–EM field system shown in Fig. 32 of the paper
is then

H =

∑
n

{
ϕ̇2
n − 2 cosαn cosϕn + α̇2

n + β2(αn+1 − αn)2
}
, (A.1)

where ϕn is the superconducting phase on nth island, β2
= (8πdEJ )−1(Φ0/(2π ))2, an(t) = (2πd/Φ0)An(t) is the normalized

and discretized EM vector potential at the nth unit cell, and the overdots denote derivation with respect to time t . The
Hamiltonian Eq. (A.1) is given in units of the Josephson energy EJ = (Φ0Ic)/(2πC), where Ic and C is the critical current and
capacitance, respectively, of the JJs, and Φ0 = h/(2e) is the flux quantum, with h and e being the Planck’s constant and the
electron charge, respectively. By adding and subtracting 2 cosφn to the HamiltonianH and subsequently rearranging, we get
the more transparent form

H = Hqub + Hemf + Hint , (A.2)

where the qubit subsystem energy Hqub, the EM field energy Hemf , and their interaction energy Hint , take respectively the
form

Hqub =

∑
n

{ϕ̇2
n − 2 cosϕn}, Hemf =

∑
n

{α̇2
n + β2(αn+1 − αn)2}, Hint =

∑
n

{2 cosϕn(1 − cosαn)}. (A.3)

In order to quantize the qubit subsystem, the classical variables ϕn and ϕ̇n are replaced by the quantum operators ϕ̂n and
ϕ̇n → −i ∂

∂ϕn
, respectively, in Hqub and Hint . The exact energy spectrum Ep(n) and the corresponding wavefunctionsΞp(n) of

the nth qubit may then be obtained by mapping the Schrödinger equation with its Hamiltonian Hqub,n = ϕ̇2
n − 2 cosϕn, onto

the Mathieu equation(
∂2

∂ϕ2
n

+ Ep,n − 2 cosϕn

)
Ξp,n = 0. (A.4)
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Since the qubits are identical and non-interacting directly, the second quantization of the qubit subsystem proceeds as
follows (the subscript n is dropped): First Hqub is written as

Hqub = −

∫
dϕnΨ̂ †(ϕ)

(
∂2

∂ϕ2 + 2 cosϕ
)
Ψ̂ (ϕ), (A.5)

where Ψ̂ † and Ψ̂ are field operators. Then, using the expansion Ψ̂ (ϕ) =
∑

papΞp(ϕ), where the operators a†
p (ap) create

(annihilate) qubit excitations of energy Ep, the Hamiltonian Eq. (A.5) is transformed into

Hqub =

∑
p=0,1,...

Epa†
pap. (A.6)

We hereafter restrictHqub to the Hilbert subspace of its two lowest levels, i.e., thosewith p = 0,1, so that in second quantized
form the Hamiltonian Eqs. (A.2) and (A.3) read

H =

∑
n

∑
p

Ep(n)a†
n,pan,p +

∑
p,p′

Vp,p′ (n)a†
n,pan,p′sin2 αn

2
+

∑
n

{α̇2
n + β2(αn+1 − αn)2}, (A.7)

where p, p′
= 0,1 and

Vp,p′ (n) ≡ Vp′,p(n) =

∫
dϕnΞ∗

p (ϕn) cosϕnΞp,n(ϕn), (A.8)

are the matrix elements of the nth qubit–EM field interaction. In the reduced state space, in which a single qubit can be
either in the ground (p = 0) or in the excited (p = 1) state, the normalization condition

∑
pa

†
n,pan,p = 1 holds for any n.

A.2. Maxwell–Bloch formulation of the dynamic equations

In accordance with the semiclassical approach adopted here, the time-dependent Schrödinger equation

ih̄
∂

∂t
|Ψ ⟩ = H̄|Ψ ⟩, (A.9)

in which H̄ is the Hamiltonian from Eq. (A.7) in physical units, i.e., H̄ = HEJ , is employed for the description of the qubit
subsystem. The state of each qubit is a superposition of the form

|Ψn⟩ =

∑
p

Ψn,p(t)a†
n,p|0⟩, (A.10)

whose coefficients Ψn,p satisfy the normalization conditions∑
p

|Ψn,p(t)|2 = 1,
∑
n,p

|Ψn,p(t)|2 = N, (A.11)

in which a finite N−qubit subsystem is implied. Assuming that the pulse power is not very strong, the approximation
[1 − cos(αn)] ≃ (1/2)α2

n can be safely applied in the interaction part of the Hamiltonian Hint . Then, the substitution of
|Ψ ⟩ = |Ψn⟩ from Eq. (A.10) into the Schrödinger equation (A.9), and the derivation of the classical Hamilton’s equation for
the normalized EM vector potential αn, yields

iΨ̇n,p = ϵpΨn,p +
1
χ

∑
p′

Vp,p′ (n)Ψn,p′α2
n, (A.12)

α̈n − β2(αn+1 + αn−1 − 2αn) +

∑
p,p′

Vp,p′Ψ ∗

n,pΨn,p′αn = 0, (A.13)

where χ = h̄ωJ/EJ . In Eqs. (A.12) and (A.13), the temporal variable is renormalized according to t → ωJ t and thus the
dimensionless energy of the qubit excitations is redefined according to EP → ϵp = Ep/χ .

The evolution Eqs. (A.12) and (A.13) can be rewritten in terms of the n−dependent Bloch vector components through the
transformation

Rz(n) = |Ψn,1|
2
− |Ψn,0|

2, Ry(n) = i(Ψ ∗

n,0Ψn,1 − Ψ ∗

n,1Ψn,0), Rx(n) = Ψ ∗

n,1Ψn,0 + Ψ ∗

n,0Ψn,1, (A.14)

in which the variables Ri (i = x, y, z) apply to each single qubit, as

Ṙx(n) = −(∆+ 2Dα2
n)Ry(n), Ṙy(n) = +(∆+ 2Dα2

n)Rx(n) − 2µα2
nRz(n), Ṙz(n) = +2µα2

nRy(n), (A.15)

α̈n + χ [Ω2
+ µRx(n) + DRz(n)]αn = β2(αn−1 − 2αn + αn+1), (A.16)
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where D =
(V11−V00)

2χ ,Ω2
=

(V11+V00)
2 , µ =

V10
χ

, and∆ = ϵ1 − ϵ0 ≡
(E1−E0)
χ

. By taking the continuous limit of Eqs. (A.15) and
(A.16), we obtain

Ṙx = −(∆+ 2Dα2)Ry, Ṙy = +(∆+ 2Dα2)Rx − 2µα2Rz, Ṙz = +2µα2Ry, (A.17)

α̈ − β2αxx +Ω2α = −χ (DRz + µRx)α, (A.18)

where Rx, Ry, Rz , and α are functions of the spatial variable x and the normalized temporal variable t , while the overdots
denote partial derivation with respect to the latter. The Bloch equations (A.17) possess the dynamic invariant

∑
iR

2
i = 1.

A.3. Slowly varying envelope approximation and reduced dynamic equations

The Slowly Varying Envelope Approximation (SVEA) relies on the assumption that the envelop of a traveling pulse in a
nonlinearmedium varies slowly in both time and space comparedwith the period of the carrier wave, whichmakes possible
to introduce slow and fast variables. According to the SVEA, the EM vector potential can be approximated as

α(x, t) = ε(x, t) cosψ(x, t), (A.19)

where ψ(x, t) = kx − ωt + φ(x, t), with k and ω being the wavenumber and frequency of the carrier wave, respectively,
which depend on each other through the dispersion relation, and ε(x, t) and φ(x, t) are the slowly varying envelop and
phase, respectively. Using fast and slow variables, the x and y Bloch vector components, Rx(n) and Ry(n), can be expressed as
a function of new, in-phase and out-of-phase Bloch vector components rx and ry as

Rx = rx cos(2ψ) + ry sin(2ψ), Ry = ry cos(2ψ) − rx sin(2ψ), Rz = rz . (A.20)

From Eqs. (A.19) and (A.20), the second temporal and spatial derivative of α(x, t) can be approximated by

α̈ ≈ 2ωε̇ sinψ + (2ωφ̇ − ω2)ε cosψ, αxx ≈ −2kεx sinψ − (2kφx − k2)ε cosψ, (A.21)

in which the rapidly varying terms of the form ε̈, εxx, φ2, φxx, φ̈, φxεx, etc., have been neglected. Substitution of Eqs. (A.21)
and (A.20), into Eq. (A.18) gives

2(ωε̇ + kβ2εx) sinψ + [2(φ̇ω + kφx) − ω2
+Ω2

+ β2k2]ε cosψ
= −χ{Drz + µ[rx cos(2ψ) + ry sin(2ψ)]}ε cosψ. (A.22)

Equating the coefficients of sinψ and cosψ in the earlier equation yields

ωε̇ + kβ2εx = −χµryε cos2 ψ, (A.23)

and

2(φ̇ω + kφx) − {ω2
−Ω2

− β2k2} = −χ [Drz + µrx cos(2ψ)]. (A.24)

The dispersion relation ω = ω(k) is obtained from Eq. (A.24) by zeroing the expression in the curly brackets as

k = ±

√
ω2 −Ω2

β
. (A.25)

Thus, EM waves propagate through the superconducting quantum metamaterial (SCQMM) only when their frequency
exceeds a critical one, ωc = Ω =

√
(V00 + V11)/2. Finally, Eqs. (A.23) and (A.24) are averaged in time over the period

of the fast time-scale T = 2π/ω of the phase ψ(x, t). Due to the assumed time-dependence of ψ(x, t) within the SVEA
framework, that averaging requires the calculation of integrals of the form

⟨F(sin f (ψ), cos g(ψ))⟩ =
1
2π

∫ 2π

0
F(sin f (ψ), cos g(ψ))dψ.

This procedure, when it is applied to the two evolution Eqs. (A.23) and (A.24) provides the truncated equations for slow
amplitude and phase

ε̇ + cεx = −χ
µ

2ω
εry, φ̇ + cφx = −χ

D
ω
Rz, (A.26)

where c = β2k/ω is a critical velocity.
Substituting Eq. (A.19) and (A.20) into Eqs. (A.17) for the original Bloch vector components, we get

(ṙx + 2ψ̇ry) cos(2ψ) + (ṙy − 2ψ̇rx) sin(2ψ) = −(∆+ 2Dε2cos2ψ)[ry cos(2ψ) − rx sin(2ψ)]i (A.27)

(ṙy − 2ψ̇rx) cos(2ψ) − (ṙx + 2ψ̇ry) sin(2ψ) = (∆+ 2Dε2cos2ψ)[rx cos(2ψ) + ry sin(2ψ)] − 2µε2cos2ψrz (A.28)

ṙz = 2µε2cos2ψ[ry cos(2ψ) − rx sin(2ψ)]. (A.29)
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By multiplication of Eqs. (A.27) and (A.28) by cos(2ψ) and sin(2ψ), respectively, and subsequent subtraction of the one
equation from the other, we get

ṙx + 2ψ̇ry = −(∆+ 2Dε2cos2ψ)ry + 2µε2cos2ψ cos(2ψ)rz . (A.30)

Similarly, by multiplication of Eqs. (A.27) and (A.28) by sin(2ψ) and cos(2ψ), respectively, and subsequent addition of the
resulting equations, we get

ṙy − 2ψ̇rx = (∆+ 2Dε2cos2ψ)rx − 2µε2cos2ψ sin(2ψ)rz . (A.31)

The, performing an averaging of Eqs. (A.29)–(A.31) over the phase ψ using the relations ⟨cos2 ψ cos(2ψ)⟩ = 1/4 and
⟨cos2 ψ sin(2ψ)⟩ = 0 yields the truncated Bloch equations

ṙx = −(δ + 2φ̇ + Dε2)ry −
µ

2
ε2rz, ṙy = +(δ + 2φ̇ + Dε2)rx, ṙz =

µ

2
ε2ry, (A.32)

where δ = ∆ − 2ω. Eqs. (A.32) possess a dynamic invariant that has a form similar to that of the original Bloch equations
(A.17), i.e., r2x +r2y +r2z = 1. The truncated Bloch equations (A.32), alongwith Eqs. (A.26) for ε(x, t) andφ(x, t) of the EMvector
potential pulse, constitute a closed system of equations describing the approximate dynamics of the SCQMM. Its solutions
are obtained in the next Section.

A.4. Exact integration of the truncated equations

The combination of Eq. (A.26) and the third of Eqs. (A.32) provides a relation between the slow amplitude and the phase
of the EM vector potential pulse. Multiplication of the first of Eqs. (A.26) by ε gives[

∂

∂t
+ c

∂

∂x

]
ε2(x, t) = −χ

µ

ω
ε2(x, t)ry. (A.33)

Subsequently, the time-derivative of the second of Eqs. (A.26), in which Ṙz = ṙz is replaced from the third of Eqs. (A.32),
gives [

∂

∂t
+ c

∂

∂x

]
φ̇(x, t) = −χ

µD
2ω
ε2(x, t)ry. (A.34)

From Eqs. (A.33) and (A.34), and by taking into account the independence of the slow temporal and spatial variables, we get

2φ̇(x, t) = Dε2(x, t) + const., (A.35)

where the constant of integration can be set equal to zero. Using Eq. (A.35), the truncated Bloch equations (A.32) can be
written as

ṙx = −(δ + 2Dε2)ry, ṙy = +(δ + 2Dε2)rx −
µ

2
ε2rz, ṙz =

µ

2
ε2ry. (A.36)

The latter can be written in a simpler form using the unitary transformation

rx = Sx cosΦ − Sz sinΦ, ry = Sy, rz = Sz cosΦ + Sx sinΦ, (A.37)

where Φ is a constant transformation angle (to be determined). The truncated Bloch equations for the ri, i = x, y, z, can be
written in terms of the new Bloch vector components Si, using a procedure similar to that used in the previous Section to
obtain Eqs. (A.32). Substituting Eqs. (A.37) into Eqs. (A.36), we get

Ṡx cosΦ − Ṡz sinφ = −(δ + 2Dε2)Sy, (A.38)

Ṡy =

[
(δ + 2Dε2) cosΦ −

µ

2
ε2 sinΦ

]
Sx −

[
(δ + 2Dε2) sinΦ +

µ

2
ε2 cosΦ

]
Sz, (A.39)

Ṡx sinΦ + Ṡz cosΦ = −
µ

2
ε2Sy. (A.40)

Multiplying Eqs. (A.38) and (A.40) by cosΦ and sinΦ , respectively, and then adding them together, we get

Ṡx =

{
ε2
[
1
2
µ sinΦ − 2D cosΦ

]
− δ cosΦ

}
Sy. (A.41)

Similarly, multiplying Eqs. (A.38) and (A.40) by sinΦ and cosΦ , respectively, and then subtracting the one equation from
the other, we get

Ṡz =

{
ε2
[
1
2
µ cosΦ + 2D sinΦ

]
− δ sinΦ

}
Sy. (A.42)
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Let us define the transformation angle through the relation tanΦ ≡ γ =
4D
µ
, so that cosΦ = ±σ and sinΦ = ±σγ where

σ = 1/
√
1 + γ 2. The choice of the sign is irrelevant and here we pick positive sign for both functions. Using thatΦ and the

definitionsW =

√
(4D)2 + µ2 and η = −δµ/W , Eqs. (A.41), (A.39) and (A.42) obtain their final form

Ṡx = +ηSy, Ṡy = −ηSx +

[
ηγ −

1
2
Wε2

]
Sz, Ṡz =

[
−ηγ +

1
2
Wε2

]
Sy. (A.43)

For the investigation of ‘‘coherent propagation’’ of an EM potential pulse, the resonance condition is applied, i.e., η = 0 or
ω = ∆/2, and then Eqs. (A.43) become

Ṡx = 0, Ṡy = −
1
2
Wε2Sz, Ṡz = +

1
2
Wε2Sy. (A.44)

Combining the second and third of Eqs. (A.44) and integrating, we obtain the ‘‘resonant’’ conservation law S2y + S2z = const..
Assuming that all the qubits are in the ground state at t = −∞, we have the initial conditions rx(t = −∞) = ry(t = −∞) =

0 and rz(t = −∞) = −1 which are transformed into Sx(t = −∞) = −γ σ , Sy(t = −∞) = 0, and Sz(t = −∞) = −σ
through Eq. (A.37). Applying the initial conditions to the resonant conservation law, we get

S2y + S2z = σ 2. (A.45)

In the following, we seek solution of the form ε = ε(τ = t − x/v) and Si = Si(τ = t − x/v), with i = x, y, z. By changing the
variables in the first of Eqs. (A.26), with ry being replaced by Sy, we get after rearrangement

ετ

ε
= χ

µ

2ω
v

c − v
Sy. (A.46)

Then, combining Eq. (A.28) with the third of Eqs. (A.44) and integrating, we get

ε2(τ ) = χ
2µ
ωW

v

c − v
[Sz(τ ) + σ ], (A.47)

where the conditions ε(−∞) and Sz(−∞) = −σ wereused. The systemof Eqs. (A.45)–(A.47) for ε, Sy, and Sz canbe integrated
exactly; the variables Sy and Sz can be eliminated in favor of ε to give ετ = λε2

√
a + bε2, in which the constants are defined

as a = 2σ/κ , b = −1/κ2, λ = χ
µ

2ω
v

c−v , κ =
2µ
ωW

v
c−v to simplify the notation. The equation for ε can be readily integrated∫ ε

ε0

dε

ε2
√
a + bε2

= λ

∫ τ

τ0

dτ ⇒ −

√
a + bε2

aε
= λ(τ − τ0), (A.48)

where we have set ε0 ≡ ε(τ = τ0) =
√
2σκ to eliminate the boundary term resulting from the integral over ε. Solving

Eq. (A.48) for ε, we finally get a Lorentzian-like slowly varying amplitude

ε(τ ) =
ε0√

1 + τ−2
p (τ − τ0)2

, (A.49)

where ε0 =
√

−a/b =
√
2σκ and

τ−2
p = −

a2λ2

b
=

(
χ
σµ

ω

)2( v

c − v

)2

. (A.50)
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