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Micromagnetic modeling of critical current oscillations in magnetic Josephson junctions
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In this work we propose and explore an effective numerical approach for investigation of critical current
dependence on applied magnetic field for magnetic Josephson junctions with in-plane magnetization orientation.
This approach is based on micromagnetic simulation of the magnetization reversal process in the ferromagnetic
layer with introduced internal magnetic stiffness and subsequent reconstruction of the critical current value using
total flux or reconstructed actual phase difference distribution. The approach is flexible and shows good agreement
with experimental data obtained on Josephson junctions with ferromagnetic barriers. Based on this approach
we have obtained a critical current dependence on applied magnetic field for rectangular magnetic Josephson
junctions with high size aspect ratio. We have shown that the rectangular magnetic Josephson junctions can
be considered for application as an effective Josephson magnetic memory element with the value of critical
current defined by the orientation of magnetic moment at zero magnetic field. An impact of shape magnetic
anisotropy on critical current is revealed and discussed. Finally, we have considered a curling magnetic state in
the ferromagnetic layer and demonstrated its impact on critical current.
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I. INTRODUCTION

Very recently, superconductor/ferromagnet hybrid struc-
tures based on weak ferromagnetic layers with low coercivity
have regained strong practical interest due to their integration
in various superconductor-ferromagnet-superconductor (SFS)
Josephson spintronic elements [1–12] and superconducting
ultrafast electronic devices [13,14].

Currently two major types of superconducting magnetic
Josephson junctions (MJJs) are considered with out-of-plane
or in-plane orientation of magnetization in the ferromagnetic
(F) tunneling layer. Originally MJJs with out-of-plane mag-
netization based on the Nb-CuNi-Nb sandwich were the first
used to observe supercurrent flow through the ferromagnetic
Josephson barrier as well as for inversion of the Josephson
current-phase relation (π state) [9,15–17]. However, due to
stable magnetic domain structure (relatively high coercive
field) and out-of-plane magnetic anisotropy, the Cu-Ni-based
MJJs are useful only for fabrication of the superconducting
phase inverters with constant phase shifts employed in digital
[15,16] and quantum [16,18] logic.

In contrast, Pd-Fe alloy thin films with small Fe content
exhibit in-plane magnetization and small coercive field making
them perfect candidates for application in novel ultrafast
Josephson cryogenic magnetic memory [4–7]. The value of
the critical current of the MJJ memory element is defined
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by in-plane magnetic flux including magnetization of the F
layer and, therefore, is governed by magnetic history of the
ferromagnetic layer.

In this work we propose and explore an effective numerical
approach for investigation of critical current dependence
on applied magnetic field for Josephson junctions with a
ferromagnetic barrier possessing in-plane magnetization ori-
entation. The method is based on micromagnetic simulation of
the magnetization reversal process in the ferromagnetic barrier
and subsequent derivation of the critical current employing
magnetic flux or numerically reconstructed distribution of the
Josephson phase difference. We focus on Pd0.99Fe0.01-based
MJJs. Yet, the method can be applied to any MJJ with in-plane
magnetization in a ferromagnetic tunnel barrier.

This paper is organized as follows. In Sec. II we provide
details for a reconstruction procedure of the Fraunhofer-like
critical current dependence on applied magnetic field based on
micromagnetic simulation. Micromagnetic simulation justifies
a finite hysteresis loop by nonalignment of orientations of local
magnetic moments with applied magnetic field. To our best
knowledge, the only attempt to discuss the finite hysteresis
loop of the Pd0.99Fe0.01 tunnel barrier considering realignment
of local magnetic moments was done in Ref. [7], but for
a simplified 1D case and employing a Gaussian probability
density for a flip of the local moment in applied magnetic
field. In Sec. III we derive the Fraunhofer-like critical current
curves for rectangular MJJs and discuss their applicability as
a Josephson memory element. Digital states of a rectangular
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memory element are associated with orientation of a saturated
magnetic moment along or across the long side of MJJs.
Originally, determination of the logical state of the MJJ
memory element via orientation of magnetic moment was
proposed theoretically in Refs. [19,20] but for a complex mixed
0-π MJJ. In Sec. IV we enforce a curling distribution of local
magnetic moments in the F barrier and discuss its effect on
critical current highlighting the difference between approaches
of critical current derivation. In Sec. V we provide a summary
and give several concluding remarks on further development
of magnetization reversal simulation and magnetic memory
based on magnetic Josephson junctions.

II. RECONSTRUCTION OF CRITICAL CURRENT
OF MJJ (VERIFICATION OF THE MODEL)

A. Critical current dependence on applied
magnetic field of MJJ

Experimental critical current dependencies on applied
magnetic field [Ic(H )] are shown in Fig. 1(a) for

FIG. 1. Experimental and reconstructed dependencies of the
critical current on applied magnetic field for 10×10 μm2 size
MJJ1 SFS (a) and MJJ2 SIsFS (b). The Ic is normalized by the
maximum critical current Ic(� = 0) (i.e., by Ic at zero total magnetic
flux). Dashed lines show corresponding dependencies of the mean
magnetization of the F layer on applied magnetic field. The mean
magnetization is normalized by the saturation magnetization Ms .

a 10×10 μm2 superconductor-ferromagnet-superconductor
(SFS) magnetic Josephson junction (MJJ) and in Fig. 1(b)
for a 10×10 μm2 superconductor-insulator-superconductor-
ferromagnet-superconductor (SIsFS) MJJ. These MJJs are of
a lumped type implying an l � λJ limit, where l is an in-plane
size of a junction and λJ is a Josephson penetration depth of
the MJJ. The experimental data in Figs. 1(a) and 1(b) were
reported previously in Refs. [4] and [6], respectively, and are
normalized with respect to the maximum Ic. For convenience,
we refer further to the experimental result shown in Fig. 1(a) as
MJJ1 and to the one shown in Fig. 1(b) as MJJ2. Fabrication and
measurement details for these MJJs can be found elsewhere
[4,6,21]. A comprehensive theory of operation principles of
SIsFS spintronic devices can be found in Refs. [7,22] and
references therein. Only the Ic(H ) curves at positively swept
magnetic field are shown, since the Ic(H ) at negatively swept
field are its mirror reflections with respect to the H = 0 axis.
As discussed in Refs. [4,6,7,21], the Ic(H ) dependence of
MJJs with in-plane orientation of magnetic moment in the F
layer is represented by a Fraunhofer-like pattern shifted from
zero field in accordance with the hysteresis dependence of
magnetization of the F layer on magnetic field [M(H )]. In
particular, the maximum of Ic(H ) corresponds to a zero total
magnetic flux across the MJJ and is located at the magnetic
field value of the same sign as the sweep of the magnetic
field [i.e., the maximum of Ic(H ) is observed at positive H

for positive magnetic field sweep and vice versa] since the
magnetization of the F layer contributes to magnetic flux. This
magnetic memory effect is a key feature of MJJs with in-plane
orientation of magnetic moment making such MJJs applicable
as a Josephson magnetic memory element.

At magnetic field well above the saturation field of the F
layer, the Ic(H ) dependence can be easily fitted [4,6] with the
classical Fraunhofer dependence valid for rectangular-shaped
lumped junctions:

Ic =
∣∣∣∣ sin (π�x/�0)

π�x/�0

∣∣∣∣
∣∣∣∣ sin (π�y/�0)

π�y/�0

∣∣∣∣. (1)

In Eq. (1), �0 is the magnetic flux quantum, �x is the total
magnetic flux in the x direction across the junction of width a,
and �y is the total magnetic flux in the y direction across the
junction of length b:

�x( �H ) = Hxadm + Mx( �H )adf ,

�y( �H ) = Hybdm + My( �H )bdf . (2)

In Eq. (2), dm is the magnetic thickness [4,6,7], df is a
fabrication-defined thickness of the magnetic layer, Hx,y

are the components of the applied magnetic field, and
Mx,y are the components of magnetization of the F barrier.
The thicknesses of magnetic layers are df = 30 nm for
MJJ1 and df = 15 nm for MJJ2. Commonly, magnetic
field is applied along a principal axis (i.e., Hx = H and
Hy = 0) and at magnetic field well above the saturation
field Mx(H ) = Ms = constant, My(H ) = 0, implying
�y = 0. The fitting procedure performed in Refs. [4,6]
yields Ms = 9.5×104 A/m, dm = 230 nm for MJJ1 and
Ms = 13.5×104 A/m, dm = 139 nm for MJJ2. In order to fit
the Ic(H ) at magnetic field below the saturation field where
the magnetization reversal of the F layer takes place the
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Mx(H ) dependence can be interpolated by arctangent [4,6] or
any other suitable analytical sigmoid-like function [7].

B. Micromagnetic model of Pd0.99Fe0.01 F layer

A true �M( �H ) dependence for the F layer at | �H | below
the saturation field can be obtained performing a micromag-
netic simulation of the magnetization reversal process in the
Pd0.99Fe0.01 tunneling layer. Micromagnetic simulation [23] is
based on numerical simulation of the Landau-Lifshitz-Gilbert
equation for local unit macrospin vectors �m = �m(x,y) placed
in local reduced effective magnetic fields �heff = �heff(x,y):

d �m
dt̃

= �m × �heff + α �m × �m × �heff, (3)

where time scale t̃ is unitless and is reduced as t̃ = tγ0Ms/(1 +
α2), γ0 is the gyromagnetic ratio, Ms is the saturation
magnetization of a simulated ferromagnet, and α is the Gilbert
damping constant [24]. In Eq. (3), both �m and �heff are reduced
with Ms . Field �heff typically includes reduced applied magnetic
field �h, reduced field of local macrospin interaction �hloc,
reduced field of magnetostatic interaction �hd , and reduced
anisotropy field �ha:

�heff = �h + �hloc + �ha + �hd. (4)

Yet, accurate micromagnetic simulation of magnetization
reversal in the Pd0.99Fe0.01 F layer can hardly be performed in
the conventional manner due to the complex cluster nature
of magnetism in Pd0.99Fe0.01 [25]. The magnetic moment
of the Pd0.99Fe0.01 thin film is distributed mostly within the
relatively large Fe-rich Pd3Fe nanoclusters of ∼10 nm size
and ∼100 nm spacing in between. The clusters are embedded
in a paramagnetic host layer. A finite hysteresis loop derived
in Refs. [4,6,25] is justified by reorientation of the magnetic
moment of these clusters. The paramagnetic host can be
saturated only at high magnetic field H > 1–2 kOe [25]
and, therefore, does not contribute to the M(H ) hysteresis
dependence in our field of interest. In particular, typical hys-
teresis loops derived from experiments with Pd0.99Fe0.01-based
MJJs do not demonstrate the paramagnetic component. Also,
it is practically impossible for micromagnetic simulation to
account for (i) the essentially granular structure of Pd0.99Fe0.01

films integrated in the considered MJJs [24] and (ii) the large
typical in-plane size of the F layer of ∼10 μm, which is
particularly large for meshing it with appropriate cell size and
number of cells.

Considering the physical picture of magnetization in the
Pd0.99Fe0.01 F barrier, we propose the following modification
for the standard micromagnetic approach. We divide the
10×10 × df μm3 F layer into a 2D mesh of �x × �y × �z =
100×100 × df nm3 cells (100×100×1 mesh). Each cell
contains at least one Fe-rich cluster of saturation magnetization
MPd3Fe � 5×105 A/m. The orientation of the micromagnetic
macrospin in each cell �m(x,y) in Eq. (3) corresponds to the
orientation of the magnetic moment in the Fe-rich cluster.
Thus, values of local magnetization in Eq. (3) and effective
field components in Eq. (4) are reduced with MPd3Fe. On
the other hand, the magnetic moment of the entire cell
corresponds to the mean magnetic moment Ms extracted from
the fitting procedure of the experimental Fraunhofer pattern.

This magnetic moment contributes to measured magnetization
and, therefore, to magnetic flux across MJJs.

Within the proposed model the terms of effective
field in Eq. (4) are modified as follows. The macrospin
orientation of each cell �m(x,y) is engaged with
surrounding cells of magnetic moment Ms via standard
magnetostatic interaction with magnetostatic field �hd

and local interaction with effective field �hloc. The
reduced magnetostatic field �hd (x,y) = �Hd (x,y)/MPd3Fe =
−∑

N(x − x1,y − y1) �m(x1,y1) × Ms/MPd3Fe, where N is the
demagnetizing tensor [26] and the summation is performed
over the entire F barrier. The normalized local field �hloc(x,y) =
�Hloc(x,y)/MPd3Fe = 2A/(μ0M

2
Pd3Fe)∇2 �m(x,y) × Ms/MPd3Fe,

where ∇2 is the Laplace operator and the exchange stiffness
constant A = 1×10−11 J/m is of a typical order for Fe-based
alloys including Pd3Fe. We employ standard Newman
boundary conditions for �hloc(x,y) calculation. In simple
terms, both standard reduced fields �hd and �hloc, which act on
macrospin of orientation �m(x,y) and of magnetization MPd3Fe,
are scaled by the ratio Ms/MPd3Fe. The external field in each
cell is also reduced with MPd3Fe: �h(x,y) = �H/MPd3Fe.

Finally we introduce an internal magnetic stiffness (IMS).
The IMS is a static property which justifies phenomenologi-
cally the resilience of the entire F layer to the remagnetization.
Incorporation of the IMS into the micromagnetic model is
required for quantitative justification of the experimentally
observed finite hysteresis loop width of the Pd0.99Fe0.01 F
barrier. The IMS may result from variation of size and/or
shape of Fe-rich clusters, their noncentral location within
the individual cell, certain easy magnetization axes arbitrarily
oriented for each cluster, or pinning of macrospin orientation
in granular medium. We represent the IMS by random
anisotropy vectors in each cell Hs

�R(x,y), where �R(x,y) are
random vectors of normally distributed length and uniformly
distributed orientation, and Hs is the magnetic stiffness
constant. Thus, the IMS acts in our model as a randomly
distributed anisotropy field �ha(x,y) = �Ha(x,y)/MPd3Fe =
�R(x,y) �m(x,y)×Hs/MPd3Fe. Such approach is referred to com-

monly as the random anisotropy model [27–29], developed
originally for amorphous and nanostructured ferromagnets.

Introduction of the IMS and employment of large cell
size make our micromagnetic simulation unable to obtain
fine magnetic structure of the F layer. Yet, they allow us to
reveal a macroscopic curling distribution of magnetization,
such as flower, vortex, or S states, if any appears. Also,
the model enables magnetization reversal at experimentally
defined coercive field. The value of magnetic stiffness constant
Hs is an extra free-fitting parameter in our micromagnetic
approach defined experimentally.

Derivation of a hysteresis loop is performed as follows. At
each magnetic field step H , Eq. (3) is relaxed using a second-
order Runge-Kutta numerical scheme until the convergence is
reached. A unitless convergence criterion is set as d �m/dt̃ <

10−7. We set α = 0.5 for faster convergence. At each magnetic
field step, the final averaged orientation of magnetic moments
defines the corresponding magnetization of the F barrier at
magnetic field H : Mx,y(H ) = 〈mx,y(x,y,H )〉Ms . Magnetic
field was swept from −50 Oe to 50 Oe with a progressive
field step. A leap-frog scheme is employed where the resulting
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�m(x,y) distribution at the previous field step is used as the
initial one at the next field step.

C. Reconstruction methods

In order to obtain Hs for F layers of MJJ1 and MJJ2, we run a
series of hysteresis loop simulations for corresponding F-layer
geometries and magnetic parameters varying the Hs . We found
that coercive force is in approximately linear dependence with
Hs . At Hs/MPd3Fe = 11.5×10−4 and Hs/MPd3Fe = 5×10−3

zero total magnetic flux is obtained at H = 1.65 Oe and H =
5.76 Oe for MJJ1 and MJJ2, respectively, corresponding to
a maximum of Ic(H ) observed in experiment (Fig. 1). The
dashed lines in Fig. 1 show the branches of hysteresis Mx(H )
dependencies in positively swept magnetic field. The factor of
4 difference in Hs parameters for MJJ1 and MJJ2 is attributed
to the same difference factor in coercive field.

Once the exact �M( �H ) is calculated for F layers the corre-
sponding Ic( �H ) can be restored directly using Eqs. (1) and (2).
Since this reconstruction of critical current implies calculation
of the total magnetic flux along and across the applied magnetic
field we refer to this approach as fluxometric reconstruction
of Ic( �H ) dependence. The fluxometric reconstructed Ic(H )
for MJJ1 and MJJ2 are shown with black lines in Figs. 1(a)
and 1(b), respectively, demonstrating a good match with the
experimental data.

An exact Ic( �H ) dependence for a lumped MJJ can be
obtained using a distribution of a phase difference ϕ(x,y, �H )
as follows:

Ic( �H ) = max

[∫ −b/2

b/2

∫ −a/2

a/2
sin ϕ(x,y, �H )dxdy

]
, (5)

where the phase difference is determined by the following
gradient distribution:

dϕ(x,y, �H )

dx
= Hydm + [

my(x,y, �H ) + h
y

d (x,y, �H )
]
Msdf ,

dϕ(x,y, �H )

dy
= Hxdm + [

mx(x,y, �H ) + hx
d (x,y, �H )

]
Msdf ,

(6)

where Hx,y are the components of applied magnetic field, and
h

x,y

d (x,y, �H ) are the local demagnetizing field components.
The fluxometric reconstruction [Eqs. (1), (2)] is only a

limiting case for exact Ic( �H ) dependence [Eqs. (5), (6)] of rect-
angular MJJ in approximation of uniform field and �m(x,y, �H )
distribution. The major significance of micromagnetic simu-
lated magnetization reversal in the F layer is the derivation of
local magnetic moments at each field step �m(x,y, �H ). These
moments can be employed for determination of the phase
difference distribution using Eq. (6) if a limiting condition
for a micromagnetic cell size ξ < �x � λJ is fulfilled, where
ξ is the superconducting coherence length. Derivation of a
scalar field ϕ(x,y, �H ) from a known distribution of its gradient
is a well-known Poisson problem. In applied mathematics,
reconstruction of a scalar field from its gradient is widely
used in photometric stereo or shape from shading analysis
[30,31]. Importantly, current numerical approaches allow us
to reconstruct a scalar field from a nonintegrable gradient
which contains noise, nonzero curl, and in absence of boundary

conditions. Red lines in Figs. 1(a) and 1(b) show the Ic(H )
for MJJ1 and MJJ2, respectively, derived from Eq. (5) using
a global least-squares (GLS) reconstruction algorithm for
phase difference distribution ϕ(x,y,H ) [Eq. (6)]. The GLS-
reconstructed Ic(H ) shows a good fit with experimental data
and fluxometric reconstruction. Yet, the maximum of Ic(H ) is
reduced to 0.86 for MJJ1 and 0.92 for MJJ2. The reduction
is related to partial relaxation of local macrospins along
�Ha(x,y) at �� = 0. If the boundary conditions for the Poisson

problem are known, the phase difference reconstruction can
be performed using a GLS reconstruction algorithm with
Dirichlet boundary conditions (GLSD). We consider linearized
boundary conditions which set a total tilt of a phase difference
surface according to �x(H ) and �y(H ) [see Eq. (2)]. The
GLSD-reconstructed Ic(H ) are also shown in Figs. 1(a) and
1(b) for MJJ1 and MJJ2, respectively, with blue lines, demon-
strating a good match with the experiment and both fluxomet-
ric and GLS-reconstructed Ic(H ) dependencies. Successful
GLSD reconstruction of critical current indicates applicability
of linearized boundary conditions for the Poisson problem.

III. RECTANGULAR MJJ MEMORY ELEMENT

The main purpose of this work is the development of the
approach for numerical analysis of critical current dependence
on applied magnetic field for MJJs with in-plane magne-
tization orientation. Once a single successful measurement
of Fraunhofer Ic(H ) dependence on MJJ is carried out, the
micromagnetic parameters can be derived using the procedure
discussed in Sec. II. If the fabrication process and measurement
temperature are reproducible, these parameters will remain for
all geometries of MJJ, validating the reconstructed Ic(H ) for
a proposed geometry. This gives an opportunity to design the
MJJ memory element with a desired response numerically
instead of performing multiple labor-intensive experiments.

As a demonstration, we consider two MJJs with magnetic
parameters corresponding to MJJ1 and MJJ2 but of size
12×4 μm2. The smallest size of 4 μm is chosen as the smallest
comfortable size for a conventional optical lithography, while
the largest size 12 μm is chosen to provide a sufficient aspect
ratio of a factor of 3. Figures 2(a) and 2(b) show Ic(H )
dependencies and corresponding Mx,y(H ) curves for MJJ1 and
MJJ2 of 12×4 μm2 size, respectively, obtained by applying
magnetic field in the x direction along the long side (α = 0◦)
and in the y direction across the long side (α = 90◦).

The rectangular shape of MJJs enables us to use the
dependence of oscillation period of Fraunhofer critical current
pattern Ic(H ) on orientation of applied magnetic field. Indeed,
the oscillation period of Ic(H ) is defined by the magnetic
surface adm and adf [see Eq. (2)]. When the magnetic field is
applied across the short side (α = 0◦ in Fig. 2), the Ic(H ) varies
slowly with H and at H = 0 critical current remains high. In
particular, Ic(H = 0) � 0.6 for MJJ1 and Ic(H = 0) � 0.8 for
MJJ2. When the magnetic field is applied across the long side
(α = 90◦ in Fig. 2), the Ic(H ) varies rapidly with H since the
magnetic surface is increased by a factor of 3. For MJJ1 at
H = 0 fluxometric and GLS-reconstructed Ic(H = 0) � 0.2
and GLSD-reconstructed Ic(H = 0) � 0.05. For MJJ2 at H =
0 fluxometric, GLS-, and GLSD-reconstructed Ic(H = 0) �
0.2. We argue that the size of rectangular MJJ can always be
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FIG. 2. Micromagnetic reconstructed dependencies of critical
current on applied magnetic field for 12×4 μm2 size MJJ1 SFS (a)
and MJJ2 SIsFS (b) and magnetic field orientation along the long
size (α = 0◦) and across the long size (α = 90◦). Green lines show
corresponding field dependencies of mean magnetization aligned with
the applied magnetic field (M||H ).

chosen in such a way that at α = 90◦ the Ic(H = 0) � 0.0
corresponding to ��(H ) = �0 condition for the first minimum
of the Fraunhofer pattern.

It appears that the rectangular MJJs can be convenient
for application as a memory element for Josephson magnetic
memory where the logical state is defined by the orientation
of saturated magnetization in the absence of applied magnetic
field. A write operation for the rectangular memory element
is realized by applying a magnetic field pulse of a constant
amplitude, but selective (x or y) orientation. The amplitude of
the write pulse should be sufficient to saturate the magnetic
moment of the F layer in any x (α = 0◦) or y direction
(α = 90◦). The pulse aligned with the x direction records
logical 0, while one aligned with the y direction records logical
1. As an example, the amplitude of the pulse of H > 15 Oe is
sufficient to perform the write operation for MJJ1 of 12×4 μm2

size [Fig. 2(a)]. A readout operation is performed by applying
a readout current (Ir ). The value of Ir for the rectangular
memory element is defined in between Ic(H = 0,α = 0◦) and
Ic(H = 0,α = 90◦). A value Ir = 0.4Ic(� = 0) can be used
for the MJJ1 memory element [Fig. 2(a)]. If the logical 1

FIG. 3. Micromagnetic reconstructed dependencies of critical
current on applied magnetic field for 12×4 μm2 size MJJ1 SFS and
magnetic field applied at α = 30◦ (a), α = 45◦ (b), and α = 60◦ (c).
Dashed lines show field dependencies of corresponding projections
of magnetization on principal axes.

is recorded, the readout current exceeds the critical current
[Ir > Ic(H = 0)] and a voltage signal appears. If the logical 0
is recorded, Ir < Ic(H = 0) and the memory element remains
in the superconducting state. Importantly, Fig. 2 shows that
the difference in critical currents for α = 0◦ and α = 90◦
orientations at H = 0 reaches a factor of 3–4, which provides
a clear difference between the two logical states.
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The realization of logical states via orientation of saturated
magnetization in rectangular MJJ at H = 0 might be more
practical than square MJJs. The Fraunhofer patterns of square
MJJs are absolutely identical with respect to the orientation
of magnetic field along principal axes. Hence, in order to
realize the distinct logical states in the square MJJ, some
additional means are required: the square MJJ should operate
under external or self-field magnetic bias [21]. Besides, partial
hysteresis loops can be used for square memory elements
[4,5], but this requires magnetic field pulses of different
amplitudes for the write operation in the square element, which
complicates the magnetic recording protocol. A rectangular
MJJ memory element with the magnetization-orientation-
defined logical states does not possess these disadvantages.

Also, the role of magnetic shape anisotropy in magnetiza-
tion reversal of the F layer is well pronounced for MJJ1 in
Fig. 2(a): the remanent magnetization M(H = 0) � 0.76 at
α = 0◦ and M(H = 0) � 0.6 at α = 90◦. In particular, sharp
reversal of magnetization at α = 0◦, caused by the shape
anisotropy, is partially responsible for concavity of central
Fraunhofer maximum. In contrast, magnetic shape anisotropy
of MJJ2 does not play any role, since both Mx(H ) and My(H )
curves in Fig. 2(b) coincide.

The micromagnetic model allows us to derive �M( �H ) curves
and corresponding Ic( �H ) for MJJs at arbitrary angles of
applied magnetic field. Figure 3 shows Ic(H ) dependencies
and corresponding Mx,y(H ) curves for MJJ1 of 12×4 μm2

size obtained by applying magnetic field at α = 30◦, α = 45◦,
and α = 60◦. An exact match for all three reconstruction
methods is demonstrated. Interestingly, the state � = 0 with
Ic = 1 is reached at α = 45◦ only where simultaneously
�x = 0 and �y = 0, while at α = 30◦ max(Ic) � 0.9 and
at α = 60◦ max(Ic) � 0.74. For all three angles of the applied
magnetic field Ic(H = 0) < 0.1. Also, a narrow first minimum
of sub-Oe width is noticeable at H � 2.5 Oe for α = 45◦ and
α = 60◦ which will be complicated to resolve experimentally.
Importantly, the progress of Mx(H ) and My(H ) curves, i.e., a
minor drop of My(H ) at H � 0 in Fig. 3(a) and of Mx(H )
at H � 0 best seen in Fig. 3(c), demonstrates an attempt
of alignment of local macrospins along principal axes of
the F layer and indicates magnetization reversal through a
so-called S state. Such behavior of Mx,y(H ) curves as well
as the mismatch of coercive field for Mx and My [best seen
in Fig. 3(c)] imply a contribution of the shape anisotropy
to magnetization reversal process. The impact of the shape
anisotropy makes micromagnetic simulation irreplaceable for
accurate Ic(H ) determination.

Figure 4 shows Ic(H ) dependencies and corresponding
Mx,y(H ) curves for MJJ2 of 12×4 μm2 size obtained by
applying magnetic field at α = 45◦. The state with � = 0
is also reached at H � 8 Oe. In contrast to MJJ1 (Fig. 3),
both Mx(H ) and My(H ) curves coincide indicating a complete
dominance of the IMS in magnetization reversal with no
impact of the shape anisotropy. This result implies that, tech-
nically, no micromagnetic reconstruction is required for MJJ2

junction: the Ic(H ) can always be obtained using fluxometric
reconstruction with interpolated analytically Mx,y(H ) curves.
The interpolated Mx,y(H ) curves will maintain for all in-plane
orientations of magnetic field and reasonable variation of
in-plane sizes.

FIG. 4. Micromagnetic reconstructed dependencies of critical
current on applied magnetic field for 12×4 μm2 size MJJ2 SIsFS
and magnetic field orientation α = 45◦. Dashed lines show field
dependencies of corresponding projections of magnetization on
principal axes.

Thus, two limits for 12×4 μm2 rectangular MJJs are
presented. In the first limit [MJJ1; Figs. 2(a) and 3], the
shape anisotropy of the F layer does play a significant role
in magnetization reversal and in accurate determination of
Ic( �H ). In the second limit [MJJ2; Figs. 2(b) and 4], the impact
of the shape anisotropy is suppressed by the IMS. One can
derive the criteria of necessity for micromagnetic simulation
of magnetization reversal as follows. A simple estimation of
the shape anisotropy field HSA for a rectangular thin-film
element [32–35] of a length a along the applied magnetic
field, width b, and thickness c, HSA/MPd3Fe ∼ c(

√
4a2 + b2 −

b)/(πab) × Ms/MPd3Fe, yields HSA/MPd3Fe ∼ 8×10−4 for
12×4×0.03 μm3 MJJ1 and HSA/MPd3Fe ∼ 5×10−4 for
12×4×0.015 μm3 MJJ2. These values can be compared
with corresponding magnetic stiffness parameters (11.5×10−4

for MJJ1 and 5×10−3 for MJJ2). The magnetic stiffness
dominates the magnetization reversal process for MJJ2 where
HSA/MPd3Fe � Hs/MPd3Fe. In this case the fluxometric recon-
struction with the interpolated Mx,y( �H ) will provide a correct
Ic( �H ) dependence for all in-plane orientations of magnetic
field and reasonable variation of in-plane sizes, since the
interpolated Mx,y( �H ) will hold.

In contrast, the shape anisotropy plays a significant role
for MJJ1 where HSA/MPd3Fe � Hs/MPd3Fe and micromagnetic
simulation is required for Ic( �H ) determination.

IV. CRITICAL CURRENT OF MJJ WITH F LAYER
AT CURLING STATE

We should note that since the fluxometric reconstruction
[Eqs. (1), (2)] is a limiting case for exact Ic(H ) dependence
[Eqs. (5), (6)] of rectangular MJJs, it might not be able to
show an adequate Ic(H ) dependence in special cases even for
rectangular shape. In particular, the fluxometric reconstruction
considers that the distribution ϕ(x,y,H ) = constant = 0 at
�� = 0. Yet, if deposition of the F layer is performed at
high enough temperature or the MJJ is annealed at a certain
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FIG. 5. Distributions of magnetic moment (arrows) and phase difference (color map) in the F layer corresponding to MJJ1 SFS but in
absence of the internal magnetic stiffness (i.e., Hs = 0) at H = 0. (a) The state is obtained from initially random distribution of magnetic
moment. (b) The state is obtained from initial distribution of magnetic moment saturated away from the principal axes. (c) The state is obtained
from initially curled distribution. Phase difference color scales are shown at the bottom.

fabrication stage the internal magnetic stiffness induced by
the magnetic structure of the F layer may vanish. In this
case the magnetization reversal process of an F layer of
such size will occur through a curling kind of state such as
the well-known S, C, or vortex magnetic states. The curling
state can be characterized by a well-defined macroscopic
distribution of magnetization orientation which in general
violates the ϕ(x,y,H ) = 0 condition at �� = 0.

In order to highlight the difference between fluxometric and
GLS reconstruction methods, we consider the original MJJ1

junction of 10×10 μm2 size with corresponding magnetic
properties of a 30 nm F layer but in the absence of the IMS.
Since the internal magnetic stiffness is absent, magnetization
of the F layer might relax completely ( �M = 0) at H = 0
providing fluxometric �� = 0 and Ic = 1 according to Eqs. (1)
and (2). On the other hand, a certain distribution of local
moments �m(x,y) in the F layer might reduce the Ic according
to Eqs. (5) and (6).

The relaxed distribution of magnetization at H = 0 is
initial-condition sensitive. Therefore, we consider three typical
cases of initial �m(x,y) distribution which can be obtained
experimentally. Figure 5(a) shows a distribution of local
magnetic moments and corresponding phase difference in a
tunneling F layer relaxed from initially random orientations
of macrospin unit vectors. This complex state can be obtained
by zero-field-cooling the MJJ through the Curie temperature
of the F layer and is characterized by several vortex-like
and domain-wall-like eddies. Typically, the magnetic moment
of the F layer relaxed from random initial conditions is
| �M|/Ms < 10−1. In a particular case, shown in Fig. 5(a),
| �M|/Ms ∼ 10−2 yields fluxometric Ic � 0.98. At the same
time, the curling distribution of magnetization yields GLS
Ic � 0.58, i.e., by the factor of almost 2 smaller.

Figure 5(b) shows a distribution of local magnetic moments
and corresponding phase difference in the tunneling F layer
relaxed from the saturated state aligned at a small angle of 1◦
relative to the x axis. This state can be obtained by applying
large magnetic field at the corresponding angle and reducing it

to zero. Typically, any state we have obtained from the initially
saturated one at any angle away from the principal axes can be
characterized by an even number of vortex-like and domain-
wall-like eddies and remanent magnetization | �M|/Ms > 10−1.
In a particular case, shown in Fig. 5(b), | �M|/Ms ∼ 10−1 yields
fluxometric Ic � 0.85. The fluxometric Ic is reduced due to the
presence of substantial Mx,y components. At the same time,
the curling distribution of magnetic moment orientations yields
GLS Ic � 0.76. A smaller difference between fluxometric and
GLS-reconstructed Ic is justified by finite M and frequent
spatial variation of the orientation of magnetic moments within
the F layer.

Finally, Fig. 5(c) shows a distribution of magnetic moments
and corresponding phase difference in the F layer relaxed
from the originally curled state with orientation set by
�m(x,y) = [−(y − y0), (x − x0),0]/

√
(x − x0)2 + (y − y0)2,

where (x0,y0) is the coordinate of the F barrier center. This
state can be obtained by cooling the MJJ through the Curie
temperature of the F layer under high current applied through
the MJJ, since the uniformly distributed current flow in a
square junction provides a similar vortex distribution of
current-induced magnetic field. This magnetic state is a
vortex with �M = 0, providing fluxometric Ic = 1. Vortex
distribution of magnetization yields GLS Ic � 0.37, i.e., by
factor of almost 3 smaller. This factor is provided by a D-shape
distribution of phase difference where the current actually
flows in areas along the diagonals, while the countercurrent
is distributed in neighboring D regions. Therefore, if a
complex curling state appears in experiment at any stage
during magnetization reversal, it will provide features on
a Fraunhofer-like Ic(H ) dependence incomprehensible for
fluxometric consideration. These features can be accounted
for by reconstructing the phase difference distribution only.

V. SUMMARY

We have demonstrated a numerical approach for simulation
of the magnetization reversal process in magnetic Josephson
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FIG. 6. Micromagnetic reconstructed dependencies of critical
current on applied magnetic field for 1×1 μm2 size MJJ1 SFS.
Dashed lines show field dependencies of corresponding projections
of magnetization on principal axes.

junctions. Our model possesses only one extra free parameter
which describes the magnetic stiffness of the F layer and
justifies the experimentally observed coercive field. Based
on micromagnetic simulation of magnetization reversal, we
have provided three approaches for reconstruction of critical
current dependence of lumped MJJs on applied magnetic field
referred to as fluxometric reconstruction, GLS reconstruction,
and GLSD reconstruction. The GLS and GLSD methods are
based on reconstruction of actual phase difference distribution
ϕ(x,y, �H ) based on numerical methods of scalar reconstruction
from a gradient field and employment of true dependence
of the critical current on magnetic field [Eq. (5)]. All three
approaches have shown a reasonable match with experiment.

We have considered rectangular MJJs with sufficient size
aspect ratio and derived their critical current dependencies. It
appears that rectangular MJJs can be employed as a memory
element for Josephson magnetic memory where the logical
state is set by the orientation of magnetic moment at zero
applied magnetic field. Studying the Ic( �H ) dependencies of
rectangular MJJs at different angles of applied magnetic field,
we have noted an impact of shape magnetic anisotropy of the
F layer on the magnetization reversal process. A limit for the
shape anisotropy effect is discussed.

Finally, we have derived critical currents of MJJ with the
F layer relaxed to curling states at zero field. We showed
that once a curling state in the F barrier occurs fluxometric
reconstruction of Ic fails to derive the correct critical current.

Additionally, within this work, we have simulated a
1×1 μm2 sized MJJ memory element. As an example, Fig. 6
shows Ic(H ) dependence for such MJJ1 junction. We have
employed the same 100×100×1 mesh with the same internal
magnetic stiffness as in Fig. 1(a) for calculations. Several well-
pronounced features on Mx,y(H ) curves and corresponding
steep transitions on Ic(H ) dependence are related to the
magnetization reversal process through sequential flower, C,
and vortex states. Magnetization reversal through well-defined
curling macroscopic states is justified by a small size of the F
layer. Hence, magnetic states and transitions can be effectively
studied employing Josephson magnetometry with microscaled
MJJs. Yet, the total variation of the critical current due to
magnetization reversal does not exceed 0.05 and the variation
in the [−10 Oe, +10 Oe] range does not exceed 0.1 for both
MJJ1 and MJJ2. Small Ic variation seems insufficient for rigid
definition of memory logical states, making the minimization
problem for MJJs based on Pd0.99Fe0.01 challenging.

Finally, we should discuss the legitimacy of the intro-
duced internal magnetic stiffness. The IMS set with random
anisotropies “mimics” a macroscopic characteristic of the
ferromagnetic sample called the switching field distribution
(SFD; see Refs. [36–38]). The SFD describes the width of
the magnetization reversal process. In this work, we simply
set the width to the dispersion of the normal distribution.
As a result, first and second minima of reconstructed Ic(H )
in Fig. 1(a) mismatch slightly the experimental data. Once
the SFD dispersion is determined it can be incorporated into
the IMS ensuring a perfect match between reconstructed and
experimental data.
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