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Dynamical Lamb effect versus dissipation in superconducting quantum circuits
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Superconducting circuits provide a new platform for study of nonstationary cavity QED phenomena. An
example of such a phenomenon is the dynamical Lamb effect, which is the parametric excitation of an atom
due to nonadiabatic modulation of its Lamb shift. This effect was initially introduced for a natural atom in
a varying cavity, while we suggest its realization in a superconducting qubit-cavity system with dynamically
tunable coupling. In the present paper, we study the interplay between the dynamical Lamb effect and the energy
dissipation, which is unavoidable in realistic systems. We find that despite naive expectations, this interplay can
lead to unexpected dynamical regimes. One of the most striking results is that photon generation from vacuum
can be strongly enhanced due to qubit relaxation, which opens another channel for such a process. We also
show that dissipation in the cavity can increase the qubit excited-state population. Our results can be used for
experimental observation and investigation of the dynamical Lamb effect and accompanying quantum effects.
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I. INTRODUCTION

Superconducting circuits can be exploited for experimental
investigation of cavity quantum electrodynamical (QED)
effects [1]. This possibility is due to the recent progress in
fabrication methods and quantum field control, which allows
one to use superconducting systems in quantum information
and computation [2–7]. The transfer of information can
be efficiently implemented provided dissipation effects and
external noise are ruled out, while this problem is known to be
quite difficult to solve [8]. Obviously, similar requirements
have to be fulfilled for QED effects to be observed in
experiments.

Several years ago the first observation of one of the
most intriguing nonstationary QED phenomena, known as
the dynamical Casimir effect, was reported [9,10]. It is
quite remarkable that it was observed for the first time in
superconducting systems although it has been predicted for
systems seemingly very distinct from such circuits [11]. Being
nonstationary, the dynamical Casimir effect differs from the
static Casimir effect. The static Casimir effect is manifested
as an attraction of two static mirrors due to the zero-point
fluctuations of the photon field confined between them. These
vacuum fluctuations contribute also to another well-known
static QED effect: Lamb shift of the atom spectrum. This
shift exists not only for natural atoms, but also for artificial
superconducting “atoms” (qubits) coupled to resonators [12].
Moreover, in contrast to natural atoms, the effect can be
significantly enhanced, since a regime of strong qubit-cavity
coupling is achievable in such systems.

The dynamical Casimir effect was initially predicted to
occur provided the mirrors are moving with respect to each
other. This motion leads to a modulation of the allowed photon
wave vectors, as dictated by the quantization conditions. As a

result, real photons are generated from a vacuum between the
mirrors, thus parametrically amplifying vacuum fluctuations.
In order to produce a feasible photon emission rate, one
has to move mirrors at velocities approaching the speed of
light. For massive mirrors, this requirement is challenging
for the current experimental facilities. That is why various
indirect schemes have been suggested [13–16], among which
we mention the modulation of electromagnetic properties of
the cavity walls and the use of acoustic waves and nanome-
chanical resonators. One such proposal was to modulate the
inductance of a superconducting quantum interference device
(SQUID) connected to a coplanar waveguide [17]. Such
a modulation can be treated as a change in the electrical
length of the waveguide which is accompanied by the desired
variation of boundary conditions. Since no motion of massive
objects is involved, a very fast modulation rate can be
achieved.

We wish to stress that the dynamical Casimir effect is
just one example of a large class of nonstationary QED
effects in which vacuum amplification is expected to play a
major role [1]. The best-known effects of this kind are the
Unruh effect [18] and Hawking radiation [19]. None of these
phenomena has been observed so far except for the dynamical
Casimir effect.

Very rich behavior is also demonstrated by nonstationary
cavities containing a single atom or an ensemble of such atoms,
thanks to matter-light coupling (see, e.g., Refs. [20–27]. The
simplest possible system of this kind is a single-mode cavity
with a time-dependent frequency, which contains a two-level
system. A cavity with a nonadiabatically modulated frequency
is similar to a parametrically driven harmonic oscillator. Such
a modulation leads to the generation of Casimir photons,
which are naturally absorbed by the atom, resulting in its
excitation [22]. A precise analysis [23], however, shows that
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there is another channel of atom excitation which is due to
nonadiabatic modulation of its Lamb shift. This effect is related
to the static Lamb shift in a similar way as the dynamical
Casimir effect is related to the static Casimir effect. For this
reason, it was suggested in Ref. [23] that this phenomenon be
termed the dynamical Lamb effect.

Unfortunately, experimentally it seems to be quite difficult
to isolate the channel of atom excitation due to the absorption
of Casimir photons from the mechanism due to the dynamical
Lamb effect, since these two excitation channels always appear
together in experiments with nonstationary cavities, in which
their frequencies experience external variations. Fortunately,
instead of real atoms it is possible to use artificial “atoms” made
of superconducting circuits with Josephson junctions. This
opportunity is very attractive because of the high flexibility of
such circuits. Two-level superconducting artificial atoms are
used nowadays as qubits for purposes of quantum computation.
Being macroscopic in size, they can demonstrate quantum
behavior on rather long time scales, approaching hundreds of
microseconds for state-of-the-art devices. Quality factors of
the available microwave resonators are of the order of 106,
so that a coupled qubit-cavity system can behave quantum
mechanically during the time intervals needed to perform
hundreds or thousands of quantum gates [5].

Moreover, it is known that coupled systems of supercon-
ducting resonators and qubits can be fabricated as dynamically
tunable in situ during experiments. It was demonstrated that
not only can the resonator frequency and the qubit excitation
energy be modulated, but also one can change the vacuum Rabi
frequency determined by the strength of the qubit-resonator
coupling. This modulation can be achieved using either flux
qubits with an additional SQIUD or two strongly coupled
charge qubits (transmons), from which a single effective
two-level system can be created (see, e.g., Refs. [28–30].
Thus it is possible not only to change several parameters
simultaneously by perturbing the whole system, but also to
modulate a particular single parameter.

This remarkable opportunity opens the possibility of full
isolation of the mechanism of qubit excitation due to the
dynamical Lamb effect from the channel of its excitation
due to the absorption of Casimir photons, as suggested
recently in Ref. [31]. Indeed, if one modulates only the
qubit-resonator coupling and does not change the resonator
frequency, no Casimir photons appear. Nevertheless, the qubit
can be parametrically excited since it somehow “feels” a
nonadiabatic change of its Lamb shift. In order to enhance
the effect and to increase the qubit excited-state population,
it was suggested in [31] to modulate the resonator-qubit
coupling periodically with twice the resonator frequency,
while the qubit and resonator are in full resonance. However,
in [31] dissipation in the qubit-resonator coupled system was
completely ignored.

The major aim of the present paper is to treat the interplay
between the dynamical Lamb effect and the dissipation within
the realization proposed in Ref. [31]. The naive expectation
is that dissipation must always suppress this purely quantum
effect, as well as the process of photon generation from a
vacuum. In particular, relaxation of qubits is opposite to the
qubit excitation process, induced by the dynamical Lamb
effect, since it leads to qubit de-excitation. In reality, we

find that the effect of dissipation is far more complex and
it results in several highly unexpected dynamical regimes
including enhanced generation of photons from a vacuum.
Another regime resembles a parametric down conversion since
it results in the generation of photon pairs at frequencies lower
than the pump frequency.

This paper is organized as follows. In Sec. II, we describe
the system under consideration and outline our theoretical
model. In Sec. III, we present a simple toy model which
allows us to understand some important features of the dy-
namical behavior of our system without performing numerical
simulations and under the assumption that the decay rate in the
cavity can be neglected. The results of such simulations under
the same assumption are then presented in Sec. IV. Section V
deals with the analysis of the effect of cavity relaxation. In
Sec. VI we apply an alternative method to solve a problem
applicable for the stationary limit after stabilization in order to
cross-check our main results. We conclude in Sec. VII.

II. HAMILTONIAN AND BASIC EQUATIONS

We focus on superconducting circuits which consist of flux
or charge qubits (transmons). This two-level system is coupled
dynamically to a high-quality coplanar waveguide, playing the
role of a single-mode cavity in optical systems. Qubit and
waveguide are spatially separated on a chip; indeed, coupling
between them can be organized by auxiliary SQUID or by
means of other methods [28,30]. Current superconducting
technologies allow the realization of architectures where
qubit-cavity coupling can be switched on and off or tuned
at gigahertz frequencies, while the amplitude can be varied
at values up to 100 MHz. As can be expected, near-future
technologies will be able to impose even more adjustable
modulations.

We describe the photon mode and qubit (at frequencies ω

and ε, respectively, which are of the order of several gigahertz)
by means of the Rabi model [32,33], known from quantum
optics, taking into account the dynamically tunable coupling
energy g(t). The total Hamiltonian of this system reads

H (t) = ωa†a + 1
2ε(1 + σ3) + V (t), (1)

where a† and a are secondary quantized photon creation
and annihilation operators and σ3 = 2σ+σ− − 1,σ+,σ− are
Pauli operators related to the qubit degrees of freedom. The
nonstationary operator V (t) describes the dynamical qubit-
cavity coupling

V (t) = g(t)(a + a†)(σ− + σ+), (2)

where (a + a†) and (σ− + σ+) are related to the electric-field
and dipole moment operators, respectively.

This qubit-cavity interaction operator can be divided into
two parts,

V (t) = V1(t) + V2(t), (3)

where

V1(t) = g(t)(aσ+ + a†σ−) (4)
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is responsible for the well-known rotating-wave approxima-
tion, provided V2 is dropped, while V2 is given by

V2(t) = g(t)(a†σ+ + aσ−). (5)

This counter-rotating-wave term is usually neglected.
The term V1 in the Hamiltonian conserves the total number

of excitations in the system, and in the stationary case V1(t) =
const it provides the exactly solvable Jaynes-Cummings
model, which is well justified near resonance, ω � ε, and
for weakly interacting systems, g � ω. The counter-rotating-
wave term V2 violates the conservation of the excitation
number, while it conserves the parity. This term plays a central
role in our treatments because it leads to the dynamical Lamb
effect. Namely, nonadiabatic modulation of V2(t) provides
qubit excitation with simultaneous photon creation [23,31].

In our previous paper [31], we took into account instan-
taneous and periodic switching of the g(t) of particular rect-
angular shapes, which provides its nonadiabatic modulation,
because the dynamical Lamb effect occurs upon nonadiabatic
changes in a system’s parameters [23]. We considered both
single switching, as g(t) = gθ (t), and periodic switching, as
g(t) = gθ (cos 2ωt), where the last modulation resulted in a
parametric pumping of the system, leading to a dramatic
increase in the effect in the case of full resonance ω = ε.
This behavior has some similarities with the so-called anti-
Jaynes-Cummings regime described in Ref. [26], in which
a single photon and one atomic excitation are created. In
the present work, we focus on the same most efficient

2ω-periodic modulations, whereas a particular shape of g(t)
can be arbitrary. In our solution, a major role is played by
two Fourier components of the g(t), q = g0 and p = g2ω,
which control the dynamics in the regime of weak qubit-
cavity coupling. For the above modulation containing periodic
switching on and off, these two parameters are p = 0.5 and
q = 1/π . A large portion of our results is presented using these
particular values of p and q, since such results turn out to be
rather typical for the domain of parameters p > q. Moreover,
this choice allows us to keep a direct link with Refs. [23]
and [31]. We also assume that relaxation in the qubit exceeds
losses in the photon mode, i.e., γ � κ , which might be related
to the experimental situation with γ ∼ 1 MHz for transmons
and κ ∼ 10 kHz for the cavity.

The dynamics of our system in the presence of energy
dissipation can be found from the Lindblad equation, which
reads

∂tρ(t) − �(ρ(t)) = −i[H (t),ρ(t)], (6)

where relaxation is described by means of the matrix

�(ρ) = κ(2aρa† − a†aρ − ρa†a)

+ γ (2σ−ρσ+ − σ+σ−ρ − ρσ+σ−). (7)

In superconducting systems, dissipation of the qubit degrees
of freedom is typically much stronger than cavity relaxation.
We focus mostly on this situation, while the effect of cavity
relaxation is analyzed in Sec. V.

In explicit form, master equations for the density matrix
operator ρ(t) neglecting cavity relaxation κ read as

iρ̇gg
m,n = ρgg

m,nω(n − m) + iγρee
m,n + g(t)

(√
nρ

ge

m,n−1 + √
n + 1ρ

ge

m,n+1 − √
mρ

eg

m−1,n − √
m + 1ρ

eg

m+1,n

)
,

iρ̇ee
m,n = ρee

m,n[ω(n − m) − iγ ] + g(t)
(√

nρ
eg

m,n−1 + √
n + 1ρ

eg

m,n+1 − √
mρ

ge

m−1,n − √
m + 1ρ

ge

m+1,n

)
,

(8)
iρ̇eg

m,n = ρeg
m,n[ω(n − m) − ε − iγ /2] + g(t)

(√
nρee

m,n−1 + √
n + 1ρee

m,n+1 − √
mρ

gg

m−1,n − √
m + 1ρ

gg

m+1,n

)
,

iρ̇ge
m,n = ρge

m,n[ω(n − m) + ε − iγ /2] + g(t)
(√

nρ
gg

m,n−1 + √
n + 1ρ

gg

m,n+1 − √
mρee

m−1,n − √
m + 1ρee

m+1,n

)
,

where the superscript indices of density matrix components
stand for the qubit ground (g) and excited (e) states, while
the subscript indices correspond to the photon numbers. These
equations can be solved numerically by truncating the basis for
photon states and taking into account some reasonable number
of these states. The accuracy can be verified by increasing the
number of states in the basis and comparing the results with
the results for a smaller basis.

However, before treating these equations, we consider a
general structure of bare energy levels and processes in which
they participate. These processes are due to the interaction
terms V1 and V2 in the Hamiltonian, as well as to the decay of
the qubit excited state. Figure 1 illustrates the dynamics of the
system upon the action of the external driving in the resonant
case ω = ε.

In general, it may be expected that there should be a
competition between various processes in our system. Namely,
there is a purely coherent process of parametric qubit excitation
tending to populate states |n,e〉, n being odd, via the term V2

in the Hamiltonian, which does not conserve the excitation

number (solid lines), and the excitation-number-conserving
term V1 (dashed lines). This process is considered in our
previous paper [31]. Qubit excitation due to the dynamical
Lamb effect occurs during this process, thanks to V2. There is
also a process of decay of the qubit excited state (wavy dotted
curves in Fig. 1), which may tend to return the system to the
initial state via V1. The latter process tries to suppress the
dynamical Lamb effect. However, instead of returning to the
initial state, the system can again be excited via V2, leading
to nonzero populations of states |n,e〉, n being even. A toy
model is proposed in the next section in order to describe
some aspects of this behavior on the simplest grounds.

III. TOY MODEL

Let us take into account only four bare levels, which have
the lowest energy: |0,g〉, |0,e〉, |1,g〉, and |1,e〉. We choose
these levels because the system of these four states already
supports two of the most important processes mentioned
above: (i) excitation of the system via V2, |0,g〉 → |1,e〉
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FIG. 1. Structure of the bare energy spectrum in the case of a full
cavity-qubit resonance and the main processes induced between bare
states due to interaction terms in the Hamiltonian, as well as due to
the decay of the qubit excited state (see text).

and (ii) subsequent decay, |1,e〉 → |0,e〉, accompanied by
oscillations between |0,e〉 and |1,g〉 due to V1. It does not
take into account, however, the possibility of a qubit’s being
excited again by V2 after the decay of its excited state, since a
larger basis is needed to treat it. This process leads to important
modifications, as demonstrated in the next section.

The system of these four levels is described by a set of
10 equations for the density matrix components. Actually,
in the context of the dynamical Lamb effect, the most
important components of the density matrix are those which
are responsible for the populations of the above levels. It can
be seen from the full set of equations that this set splits into
two uncoupled subsets. The subset relevant for the occupation
probabilities of two-qubit states are

iρ̇
gg

0,0 = iγρee
0,0 + g(t)

(
ρ

ge

0,1 − ρ
ge∗
0,1

)
, (9)

iρ̇ee
0,0 = −iγρee

0,0 + g(t)
(
ρ

eg

0,1 − ρ
eg∗
0,1

)
, (10)

iρ̇
gg

1,1 = iγρee
1,1 + g(t)

(
ρ

ge

1,0 − ρ
ge∗
1,0

)
, (11)

iρ̇ee
1,1 = −iγρee

1,1 + g(t)
(
ρ

eg

1,0 − ρ
eg∗
1,0

)
, (12)

iρ̇
eg

0,1 = ρ
eg

0,1(ω − ε − iγ /2) + g(t)
(
ρee

0,0 − ρ
gg

1,1

)
, (13)

iρ̇
ge

0,1 = ρ
ge

0,1(ω + ε − iγ /2) + g(t)
(
ρ

gg

0,0 − ρee
1,1

)
. (14)

We hereafter consider the qubit and cavity to be in full
resonance, ω = ε. Let us represent ρ

ge

0,1 by the product of fast-
and slow-oscillating factors as

ρ
ge

0,1 = ρ̃
ge

0,1 exp(−2iωt), (15)

as suggested by Eq. (14). All other components of the density
matrix are free of fast oscillations as seen from Eqs. (9)–(13).

Next, we insert Eq. (15) into Eqs. (9)–(14) and perform
an approximate averaging over time. For the time-averaged
quantities appearing on the right-hand sides of the resulting

equations we use the uncouplings〈
g(t)ρ̃ge

0,1

〉
t
� 〈g(t)〉t ρ̃ge

0,1 ≡ pρ̃
ge

0,1,〈
g(t) exp(−2iωt)ρ̃ge

0,1

〉
t
� 〈g(t) exp(−2iωt)〉t ρ̃ge

0,1

≡ qρ̃
ge

0,1, (16)

which are further utilized to separate fast and slow oscillations.
It can be proved that they are valid provided g(t) � ω. Thus
we look for a stationary, in leading order, solution that implies
that the left-hand sides of Eqs. (9)–(14) must vanish. Note that
we assume the time invariance of g(t): g(−t) = g(t).

We, finally, obtain the following set of linear equations for
the stationary solution:

iγρee
0,0 + q

(
ρ̃

ge

0,1 − c.c.
) = 0, (17)

−iγρee
0,0 + p

(
ρ

eg

0,1 − c.c.
) = 0, (18)

−iγρee
1,1 + p

(
ρ

eg

0,1 − c.c.
) = 0, (19)

iγρee
1,1 + q

(
ρ̃

ge

0,1 − c.c.
) = 0, (20)

− iγ

2
ρ

eg

0,1 + p
(
ρee

0,0 − ρ
gg

1,1

) = 0, (21)

− iγ

2
ρ̃

ge

0,1 + q
(
ρ

gg

0,0 − ρee
1,1

) = 0. (22)

By solving this linear system of equations, we readily
express populations of the states through the population of
the ground state,

ρee
0,0 = ρee

1,1 = 4q2

4q2 + γ 2
ρ

gg

0,0, (23)

ρ
gg

1,1 = γ 2 + 4p2

γ 2 + 4q2

q2

p2
ρ

gg

0,0, (24)

while ρ
gg

0,0 can be found from the normalization condition.
Let us analyze some limiting cases. We start from the case

of a low dissipation, γ � p,q. In this case, the populations
of four states are all the same, which is to be expected. In the
opposite limit, γ � p,q, we have

ρee
0,0 = ρee

1,1 � 4q2

γ 2
ρ

gg

0,0 � ρ
gg

0,0, (25)

ρ
gg

1,1 � q2

p2
ρ

gg

0,0. (26)

We see that in this case the population of the qubit excited
state becomes very small, while by tuning the ratio of
Fourier components q/p one can redistribute the occupation
probability between a state with zero photons and a state with
one photon. The higher this ratio, the larger the occupation
of the state with one photon. This is a natural result in view
of the fact that q is responsible for the excitation from the
ground state. What is not so obvious is that ρ

gg

1,1 is dissipation
independent, despite the fact that dissipation is needed for this
state to be occupied. It is also of interest that the qubit excited
state does play a crucial role in this process; nevertheless, it
turns out to be essentially empty when a stationary regime is
achieved. In order to achieve a ratio q/p exceeding 1, one has
to use high-amplitude modulations of g(t), thus changing its
sign.
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We also consider intermediate cases. The first one is
q � γ � p. In this case, we obtain

ρee
0,0 = ρee

1,1 � ρ
gg

0,0, (27)

ρ
gg

1,1 � γ 2

4p2
ρ

gg

0,0 � ρ
gg

0,0. (28)

The first relation is expected, since we are dealing with the
strong excitation limit. However, the second one is not as
trivial. It can be understood by the fact that the occupation
probability is accumulated in state |1,g〉 due to the smallness
of p, which is responsible for the link with |0,e〉.

The second intermediate case is p � γ � q. It gives

ρee
0,0 = ρee

1,1 � ρ
gg

1,1 � 4q2

γ 2
ρ � ρ

gg

0,0. (29)

This situation is rather trivial. It corresponds with weak
excitation, so that the occupation probability is accumulated
in state |0,g〉.

The toy model presented in this section is useful since
it indicates the general trend of the behavior of our system.
Nevertheless, an analysis involving a larger basis of bare states
is certainly needed.

Note that by using the interplay between different Fourier
components of the external electromagnetic signal, one can
also achieve the synchronization of a qubit ensemble [34]
despite the unavoidable disorder in excitation energies of
Josephson qubits [35].

IV. FULL NUMERICAL ANALYSIS

In this section, we present the results of our numerical
simulations of the full set of Eqs. (8) taking into account 80
photon states. We verified the accuracy of this approximation
by increasing the number of states taken into account and
comparing the results.

We first consider the same modulation, g(t) = gθ (cos 2ωt),
as in our previous paper [31], for which p = 0.5 < q =
1/π . In Fig. 2 we plot the time dependencies of the qubit
excited-state population we [Fig. 2(a)] and the mean photon
number nph [Fig. 2(b)] after the external driving is turned
on at gmax ≡ max g(t) = 0.05ω, while the initial state had
0 excitations, |0,g〉. The time is measured as TR = π/gmax.
Solid lines correspond to the case γ = 0.01ω, while dashed
lines correspond to γ = 0. These dependencies are actually
superpositions of fast and slow oscillations with frequencies
of the order of ω and gmax, respectively. Fast oscillations are
not shown in Fig. 2 because of their low amplitude in the limit
gmax/ω � 1.

It is shown in Fig. 2 that both the qubit excited-state
population and the mean photon number tend to experience
Rabi-like oscillations, in agreement with the results of [31],
but they decay if the nonzero γ is taken into account. Despite
the external driving the qubit finally becomes saturated in its
ground state. This implies that the dynamical Lamb effect
becomes suppressed at long times. However, the mean photon
number nph tends to some nonzero constant value (under
the approximation neglecting losses in a photon mode). The
characteristic time of the decay of Rabi-like oscillations is

FIG. 2. (a) The qubit excited-state population and (b) the mean
photon number as a function of the time after the external parametric
driving with p = 0.5, q = 1/π is turned on at gmax = 0.05ω. Solid
blue lines correspond to γ = 0.01ω; dashed green lines, to γ = 0.

given approximately by 1/γ . The nonzero nph(t → ∞) can be
treated as a residue of the dynamical Lamb effect, since the
photons in the initially empty cavity in the system we study can
appear only due to qubit excitation with simultaneous photon
creation (term V2) and subsequent creation of an additional
photon and qubit transition to the ground state (term V1).

The statistics of photon states after their stabilization turns
out to be rather peculiar and it is definitely dictated by
a parametric excitation of photons. In Fig. 3 we plot the
histogram of the dependence of the mean number of photons in
the n-photon state on n. We see that only states with even values
of n are populated after stabilization. Figure 4 shows how
photon states become stabilized after the parametric driving is
turned on. The set of parameters for these two figures is the
same as that for Fig. 2.
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FIG. 3. Histogram of the mean number of photons in n-photon
states after stabilization at γ = 0.01ω, gmax = 0.05ω. Parameters of
the modulation of g(t) are p = 0.5, q = 1/π .

Figures 2 and 3 evidence that only low-energy photon states
and the ground-state energy of a qubit are populated after
stabilization, i.e., states |n,g〉 with n ∼ 1. This is due to the
competition between two processes, as shown by the simple
toy model presented in the preceding section. The fact that
we do have stabilization in our system with the qubit being
in its ground state means that the process involving decay is
stronger. Nevertheless, in order to achieve this stabilization,
as shown in Figs. 2 and 4, a certain intermediate dynamical
regime is needed under which the qubit can be in its excited
state.

A certain analogy can be seen between this final regime
and the phenomenon of parametric down conversion. In both
cases, an external pump of the system by a periodic signal
results in the spontaneous generation of pairs of photons with
lower frequencies. As is known, microscopic mechanisms
underlying such nonlinear effects can be different (see, e.g.,
Ref. [36]). In this paper, we are mainly interested in such
a microscopic description of a particular system suitable for
realization of the dynamical Lamb effect. Indeed, the main
focus of our work is the qubit degrees of freedom, while in the
theory of parametric down conversion the main emphasis is
on photon generation, whereas the atomic degrees of freedom
are normally considered as a source of nonlinearities. Apart
from the interest from the viewpoint of fundamental physics,
our approach is also motivated by the perspective of using
such systems in quantum technologies, in which qubit degrees
of freedom as well as correlations between them and photon
modes are of crucial importance.

The results obtained by numerical simulations are in
qualitative agreement with the results of our toy model in
the strong-γ limit at p > q. Namely, we see that the qubit
excited state tends to become empty, while photon states with
a lower energy have larger populations. Of course, the toy
model is unable to correctly describe other important features
because of the very strong truncation of the basis encoded

FIG. 4. Dynamics of mean photon numbers in n-photon states
with (a) even and (b) odd values of n at γ = 0.01ω, gmax = 0.05ω.
Parameters of the modulation of g(t) are p = 0.5, q = 1/π . Solid
black, dashed blue, and dotted green lines correspond to two-, four-,
and six-photon states, respectively, in (a) and to one-, three-, and
five-photon states in (b).

in it. For instance, within our toy model, both even and odd
photon states are populated in the final state. In order to see
how the depletion of odd states occurs at a large enough basis,
we extend this basis step by step by taking into account more
and more levels and solving the problem numerically. We then
follow the evolution of level populations in the final state.

By considering six levels, we see that the population of level
|1,e〉 decreases. The reason is that this occupation probability
is redistributed from this level to the “new” state |2,g〉 through
V1, while the only channel to increase it is an excitation via V2

from |1,g〉 to |2,e〉, with subsequent decay of the qubit excited
state. Since we are in a regime where V1 overcomes V2, the
first process dominates and leads to a partial depletion of |1,e〉.
We then see that, due to this mechanism, the larger the basis
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we take into account, the stronger the effect of depletion of
the qubit excited states. An infinite basis leads to essentially
full depletion of these levels. However, in this case, only states
with even photon numbers and the qubit in the ground state can
be populated, since there is a certain asymmetry between the
two subsets of levels with even and odd numbers of photons.
Indeed, the “ladder” of states in Fig. 1 starts with 0 (even)
number of photons. The state |0,e〉 can be empty only if |1,g〉
is empty. Then we can repeat the same argument for |2,e〉 and
|3,g〉, etc., to see that only populations of states with even
photon numbers survive after stabilization.

Note that only even states are also populated under the
action of the dynamical Casimir effect. Thus, if generation
of Casimir photons is not completely ruled out during an
experiment, due to some drawback of the experimental setup,
it is difficult to distinguish between the dynamical Lamb effect
and the dynamical Casimir effect via photons, provided photon
states are studied in experiments at t � 1/γ . Hence, one has
to perform measurements within the time interval �1/γ when
both even- and odd-number photon states are populated (as
well as the qubit excited state), in contrast to the photon
statistics due to the dynamical Casimir effect.

Nevertheless, there is a method to make the dynamical
Lamb effect much more pronounced at t � 1/γ . We can see
that our toy model predicts some change in the behavior
of this type of external drive, for which q exceeds p,
which implies the use of sign-alternating time dependences
of the coupling constant. We now examine this threshold in
numerical simulations. In Fig. 5 we plot the mean photon
number in the n-photon state as a function of n at three
different moments in time after switching-on of the parametric
driving at p = 0.3, q = 1. We see no stabilization at this ratio
of p/q. Namely, the maximum of this dependence increases

FIG. 5. Dependence of the mean photon number in the n-photon
state as a function of n at three moments in time after switching-on
of the parametric driving at γ = 0.01ω, gmax = 0.05ω. Parameters of
modulation of g(t) are p = 0.3, q = 1. Solid black, dashed blue,
and dotted green lines correspond to times TR , 5TR , and 10TR ,
respectively.

with time, so that the total mean photon number also increases.
This feature can again be traced from our toy model, which
predicts, in the strong-γ limit, certain change in the behavior.
The difference is that the toy model includes only four states,
so that there is a boundary above which the maximum cannot
move. Within the toy model, we see a tendency to maximize the
probability of finding a system in the one-photon state, while
in reality this maximum starts to move farther. Again, this
change in the behavior at p = q can be tested in experiments.

Let us mention that, in the case of a composite system,
the possibility of making quantum effects quite robust by
using periodic pumping of the coupling constant between
its constituent parts was demonstrated in Ref. [37] for two
coupled harmonic oscillators at finite and high temperatures.
In contrast, we consider a coupled system consisting of two
parts which obey Bose and Pauli statistics, respectively, and at
low temperatures. Nevertheless, our results together with the
results in Ref. [37] indicate that we deal here with a certain
class of related phenomena.

Figure 6 shows the time evolution of the qubit excited-state
population [Fig. 6(a)] and mean photon number [Fig. 6(b)]
after switching-on of the parametric driving characterized by
parameters p = 0.3, q = 1 and at gmax = 0.05ω. Solid lines
correspond to a dissipative system with γ = 0.01ω; dashed
curves, for γ = 0. We see that the finite value of γ leads to
the decay of Rabi-like oscillations for the qubit excited-state
population, which tends to be stabilized at the value 1/2 and
does not vanish. Thus, the dynamical Lamb effect is much
more robust with respect to dissipation in this case. The most
striking feature is that, after some initial oscillations, the mean
photon number starts to increase linearly, which shows that
there is no stabilization with this type of parametric driving. It
is remarkable that this counterintuitive growth is only possible
if energy dissipation due to decay of the qubit excited state is
present in the system. Indeed, this growth is absent if γ = 0,
as shown in Fig. 6. This happens because another channel of
photon generation is open, provided that γ is finite (see Fig. 1).
Such a channel does not exists within our toy model because
of the basis truncation. It consists in excitation of the initial
configuration via V2, subsequent decay of the qubit excited
state, and, again, excitation of the qubit from the ground to the
excited state, with simultaneous photon creation. Hence, both
even- and odd-number photon states become populated. Thus,
because of the strong increase in the mean photon number,
dissipation-assisted parametric amplification of the vacuum
occurs.

Let us discuss in more detail the crossover between the two
types of behavior which occurs at p = q, as deduced from nu-
merics. We continue the set of Eqs. (9)–(14) by taking into ac-
count all photon states. We also know that for ξ = q/p < 1 at
long times, t � 1/γ , only ρ

gg

2n,2n is nonzero, while all remain-
ing relevant components vanish. We then equate these quanti-
ties to 0 in the new set of equations, as well as the time deriva-
tives ∂ρ/∂t . This leads to the following recurrent relations:

ρ
gg

m+1,n = −ξ

√
m

m + 1
ρ

gg

m−1,n, (30)

ρ
gg

m,n+1 = −ξ

√
n

n + 1
ρ

gg

m,n−1. (31)
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FIG. 6. Dependence of (a) the qubit excited-state population and
(b) the mean photon number on the time after switching-on of
the parametric driving at gmax = 0.05ω, p = 0.3, q = 1 at nonzero
dissipation γ = 0.01ω (solid blue lines) and at γ = 0 (dotted green
line).

These equations readily yield the identity:

ρ
gg

n+2,n+2 = ξ 2 n + 1

n + 2
ρgg

n,n. (32)

Starting from ρ
gg

0,0, we obtain

ρ
gg

2j,2j = ξ 2j (2j − 1)!!

(2j )!!
ρ

gg

0,0, (33)

j = 1,2, . . . ,∞. This recurrent relation is in full agreement
with our results of numerical simulations for density matrix
diagonal components.

In order to determine ρ
gg

0,0, we use the normalization
condition Sp ρ ≡ 1, which can be rewritten as⎛⎝1 +

∞∑
j=1

ξ 2j (2j − 1)!!

(2j )!!

⎞⎠ρ
gg

0,0 ≡ 1. (34)

This series converges provided that ξ < 1 or, equivalently,
q < p; otherwise, normalization is impossible. In the case
ξ < 1, the result of the summation is(

1 + ξ 2√
1 − ξ 2(1 +

√
1 − ξ 2)

)
ρ

g,g

0,0 ≡ 1, (35)

as can be directly checked by performing a Taylor expansion.
Thus, the stationary solution indeed exists if the condition ξ <

1 is satisfied, while there is no stationary solution at q � p.

V. EFFECT OF CAVITY RELAXATION

In this section, we take into account cavity dissipation,
which is typically much smaller than dissipation of the qubit
degrees of freedom in available superconducting qubit-cavity
systems. Nevertheless, its effect can be important in view of
the fact that different types of dissipation may open various
channels in the dynamics of the system, as we have seen in the
preceding sections. Thus, we take into account nonzero κ in
the Lindblad equation, as given by Eqs. (6) and (7).

We start with consideration of the modulation with q < p,
for which the qubit excited-state population vanishes at κ = 0
and at t → ∞. Figure 7 shows this quantity as a function
of time at p = 0.5, q = 1/π, gmax = 0.05ω, γ = 0.01ω and
at three values of κ/γ : 0.01 (solid black line), 0.1 (dashed
blue line), and 1 (dotted green line). Remarkably, finite cavity
dissipation leads to a nonzero qubit excited-state population
at long times. This happens because cavity relaxation tends
to decrease the mean photon number without changing the

FIG. 7. Qubit excited-state population at p = 0.5, q =
1/π, gmax = 0.05ω, γ = 0.01ω and at three values of κ/γ : 0.01
(solid black line), 0.1 (dashed blue line), and 1 (dotted green line).
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FIG. 8. Histograms of the mean number of photons in n-photon
states after stabilization at γ = 0.01ω, gmax = 0.05ω and at two
values of κ/γ : (a) 0.1 and (b) 1. Parameters of the modulation of
g(t) are p = 0.5, q = 1/π . Dark-gray bars correspond to odd n;
light-gray bars, to even n.

state of the qubit. Therefore, if the qubit is in the excited state,
instead of its relaxation to the ground state controlled by γ , the
state of the whole system can be changed by decreasing the
photon number and keeping the qubit excited. In other words,
there is a certain competition between γ and κ in this case.
Hence, higher cavity dissipation can also help to increase the
qubit excited-state population at t → ∞, thus supporting the
dynamical Lamb effect.

Figure 8 shows histograms of the mean number of photons
in n-photon states after stabilization at γ = 0.01ω, gmax =
0.05ω, p = 0.5, q = 1/π and at two values of κ/γ : 0.1
[Fig. 8(a)] and 1 [Fig. 8(b)]. We see that states with odd
values of n start to be populated because of the processes
which change the photon number without changing the qubit

FIG. 9. Qubit excited-state population at p = 0.3, q = 1, gmax =
0.05ω, γ = 0.01ω and at two values of κ/γ : 1 (solid blue line) and
0.1 (dashed green line).

state. However, the populations of these states remain small at
κ/γ � 1.

We now consider modulations with q > p. Figure 9 shows
we(t) at two values of κ . We again see that we(t → ∞)
increases as κ increases, but this growth is rather weak at
κ/γ � 1. This is also due to processes which change the
photon number without affecting the qubit degrees of freedom.
We again arrive at the same conclusion as in the case where
q < p: that cavity dissipation increases the dynamical Lamb
effect within our scheme at t → ∞. Actually, these two cases,
q > p and q < p, become not so distinct when a nonzero κ is
taken into account, as can be expected. Indeed, Fig. 10 shows
the mean photon number as a function of time for three values
of κ . The nearly linear growth of this quantity at t → ∞ found
for κ = 0 is replaced by its saturation. Its final value drops as
κ increases. However, it still can be much larger than the same
quantity in the absence of dissipation, which implies that an
additional channel of photon generation from vacuum with the
assistance of qubit relaxation, as discussed in the preceding
section, still exists in this κ = 0 case.

The major result in this section is that nonzero cavity
dissipation increases the qubit excited-state population at t →
∞. This feature can be used as an alternative tool to increase
the effect without switching to sign-alternating modulations,
which can be difficult to implement in experiments.

Let us mention that some aspects of the temporary
evolution of systems with dynamically tunable light-matter
interactions have been studied in the literature (see, e.g.,
Refs. [25–27,38–41]. This interaction was assumed to vary
either along or simultaneously with other parameters, such
as the cavity frequency. In most of these studies, however,
only a regime of weak modulation was considered. In general,
it was also implicitly suggested that the dissipation rates of
both qubit and photon states are of the same order. Due to
these assumptions, a rich dynamical picture, predicted in the
present paper, has not been revealed up to now, to the best of
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FIG. 10. Mean photon number at p = 0.3, q = 1, gmax =
0.05ω, γ = 0.01ω and at three values of κ/γ : 0.01 (solid black line),
0.1 (dashed blue line), and 1 (dotted green line).

our knowledge. Moreover, as usual in the case of nonlinear
optical effects, these studies focused mainly on the analysis of
properties of photons generated upon the modulation of system
parameters. For instance, in Ref. [27] the interaction between
Casimir photons and matter was shown to be responsible for
the nonlinear-in-photon-number term in the purely photonic
effective Hamiltonian in certain limits. The latter was obtained
by exclusion of the atomic degrees of freedom from the full
“microscopic” system Hamiltonian. Within this approach, the
term nonlinear dynamical Casimir effect was introduced in
Ref. [27]. In contrast, the present paper as well as preceding
articles [22,23,31] concentrate mainly on what goes on with
the qubit (atom) degrees of freedom. From this perspective, the
nonlinear dynamical Casimir effect in a nonstationary cavity
is intrinsically related to the atom excitation due to absorption
of Casimir photons as well as to the dynamical Lamb effect.

VI. NUMERICAL SOLUTION FOR STEADY-STATE LIMIT

In this section, we provide an alternative approach to the
problem, which enables us to directly attain the steady-state
limit achieved after stabilization of the system and to cross-
check our results. The solution for the density matrix elements
in the steady-state limit, i.e., on time scales significantly
exceeding the relaxation times, can be found numerically
without direct integration over the entire evolution period. This
calculation can be performed by means of integration of the
Lindblad equation over a single period of the time-dependent
Hamiltonian H (t), i.e., within the interval 0 < t < π/ω. In this
solution we do not perform integrating-out of fast-oscillating
terms and do not use transition to rotating frames.

The Lindblad equation can be rewritten through the super-
matrix A(t) acting on vector �ρ(t) combined from elements of
the density matrix ρ(t),

d �ρ(t)/dt = A(t) �ρ(t). (36)

In the steady-state limit we assume that this solution is periodic
�ρ(t + π/ω) = �ρ(t), with the period T = π/ω of Hamiltonian
H (t) and A(t). We find numerically the matrix of evolution U ,
which relates �ρ(T ) and �ρ(0):

�ρ(T ) = U �ρ(0). (37)

The eigenvector of �ρ0 = U �ρ0 gives the steady-state solution
�ρ0 = �ρ(NT ) realized at infinite limit of N . Integration of the
Lindblad equation over 0 < t < π/ω with the initial condition
�ρ0 provides the periodic steady solution ρst(t). Averaging of
the diagonal elements of ρst(t) over the time provides the level
populations in the qubit and photon channels. This solution
gives mean photon numbers which are identical to the above
results for the time-dependent numerical solution.

VII. SUMMARY AND CONCLUSIONS

The coupled system of a superconducting qubit and a
microwave resonator can be used for experimental observation
of the dynamical Lamb effect [31], which can be treated as
the parametric excitation of an atom due to nonadiabatical
modulation of its Lamb shift [23]. This can be achieved by
dynamically tuning the vacuum Rabi frequency (strength of the
coupling between qubit and resonator) without changing any
other parameters, such as the resonator frequency. Under these
conditions, no generation of Casimir photons occurs, which
is a crucial condition for isolation of the dynamical Lamb
effect from other nonstationary QED phenomena also leading
to the parametric excitation of a qubit. This modulation of the
vacuum Rabi frequency in superconducting circuits is possible
thanks to several approaches proposed recently [28–30].
Note that, in contrast to natural systems, it is also possible
to achieve a regime of strong or even ultrastrong light-matter
coupling in artificial superconducting systems.

In the present paper we have studied the influence of energy
dissipation on qubit excitation due to the dynamical Lamb
effect. The influence of dissipation in a qubit is of particular
importance since it leads to qubit de-excitation and it also far
exceeds cavity relaxation in typical superconducting qubit-
cavity systems.

Our major conclusion is that the qubit excited-state popu-
lation in the presence of dissipation depends crucially on the
character of the vacuum Rabi frequency modulation. Note
that we have assumed that the qubit and resonator in the
initial moment are not excited. We also took into account that
decay of photon states in superconducting circuits is typically
much weaker than relaxation in a qubit, which allows for the
separation of the characteristic time scales for the two types of
dissipation.

We found that some types of periodic modulation of the
vacuum Rabi frequency lead to a decay with time of the
qubit excited-state population, while the mean number of
generated photons tends to be stabilized around some finite
number. However, other types of parametric driving of the
same quantity lead to completely different behavior. In this
case, the qubit excited-state population becomes stabilized
near the large value of 1/2, while the number of photons
in the system increases nearly linearly with time until it also
becomes stabilized by photon-field relaxation. Hence, in this
case, the dynamical Lamb effect is much more robust with
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respect to dissipation in a qubit. The latter phenomenon can
be treated as dissipation-assisted parametric amplification of a
vacuum, since another channel of photon generation from the
vacuum opens due to the relaxation of the qubit.

We would like to stress that this striking increase in the
photon number is possible only when finite dissipation in
a qubit is taken into account, since this dissipation adds
another channel of photon generation from vacuum via the
qubit degrees of freedom. These results show that there are
two competing processes in our system. The first one is due
to counter-rotating processes, which excite the qubit, with
simultaneous photon creation. The second one is decay of
the qubit excited state accompanied by oscillations due to
excitation-number-conserving processes. Which one prevails
depends on the character of the modulation. We also demon-
strate that this competition can be described by the balance
of two parameters which are nothing but two first Fourier
components of the vacuum Rabi frequency as a function
of the time. The second regime is possible only for strong
driving, such that the coupling constant changes its sign
during modulation. Modulation of this sort seems possible
with present or near-future technologies. Thus, we hope that
the change in behavior that we predict here can be observed in
experiments.

We have also analyzed in more detail the effect of cavity
relaxation. We find that the difference between the two regimes
is smeared out, since in both cases stabilization is finally
achieved, but only at long enough times. Moreover, nonzero
cavity relaxation always leads to an enhancement of the qubit
excited-state population at long times. Hence, by increasing

this quantity, one can also increase the dynamical Lamb effect.
This increase is stronger for those types of modulation which
lead to the decay of this probability in the dissipation-free
case. Thus, an increase in cavity relaxation provides an
alternative method for enhancing the effect. This method is
important because it does not require the use of sign-alternating
modulations, which can be technically difficult to implement.

The investigation of responses of quantum systems to nona-
diabatic modulation of their parameters is of interest not only
from the viewpoint of realization of various fundamental QED
effects, but also for the purposes of quantum computation.
Indeed, high-speed gates can induce various nonstationary
QED effects related to vacuum amplification and parametric
generation of excitations from vacuum. Therefore, both the
understanding and the control of such effects are of great
importance.
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