
PHYSICAL REVIEW B 89, 054507 (2014)

Collective quantum coherent oscillations in a globally coupled array of superconducting qubits
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We report a theoretical study of coherent collective quantum dynamic effects in an array of N qubits (two-level
systems) incorporated into a low-dissipation resonant cavity. Individual qubits are characterized by energy level
differences �i and a spread of �i is taken into account. Noninteracting qubits display coherent quantum beatings
with N different frequencies, i.e., ωi = �i/�. Virtual emission and absorption of cavity photons provides a long-
range interaction between qubits. In the presence of such interaction we analyze quantum correlation functions
of individual qubits Ci(t) to obtain two collective quantum-mechanical coherent oscillations, characterized
by frequencies ω1 = �̄/� and ω2 = ω̃R , where ω̃R is the resonant frequency of the cavity renormalized by
interaction. The amplitude of these oscillations can be strongly enhanced in the resonant case when ω1 � ω2.
These collective quantum oscillations can be directly observed, e.g., by measurements of frequency dependent
transmission coefficient D(ω) of electromagnetic field propagating in a transmission line coupled to the system.
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I. INTRODUCTION

Great attention is devoted to theoretical and experimental
studies of various superconducting qubits [1–3]. It can be small
and large Josephson junctions (charge and phase qubits), rf
superconducting quantum interference devices (SQUIDs), and
many-junction superconducting quantum interferometers (flux
qubits), just to name a few. A crucial property of such systems
is that at low temperatures they can be modeled as quantum-
mechanical two-state systems displaying coherent quantum
dynamical phenomena, i.e., quantum beating between two
states [4–7], and, in the presence of externally applied radi-
ation, microwave induced Rabi oscillations, Ramsey fringes,
etc., [8–10]. For single qubits these effects have been analyzed
theoretically and observed experimentally.

As we turn to diverse systems containing many interact-
ing qubits quantum dynamics becomes more complex and
interesting. First of all due to a spread of parameters of
individual qubits they perform quantum beating oscillations
with different frequencies equal to (in the noninteracting case)
ωi = �i/�, where �i is the energy level splitting of a single
qubit. For example, in Ref. [11] a system of seven flux qubits,
i.e., three-junction superconducting quantum interferometers,
has been studied to reveal a behavior corresponding to
the presence of seven different two-level systems. Thus,
the presence of an unavoidable spread of parameters of
qubits results in a nonsynchronized quantum dynamics of
noninteracting qubits. Similar results have also been obtained
for a single Josephson junction containing a large amount
of microscopic two-level systems randomly distributed in its
insulator interlayer [12–14]. Therefore, one could ask: Is it
possible to observe collective quantum coherent phenomena
arising in the whole system?

In order to obtain such synchronized behavior in systems of
many qubits an interaction between them has to be provided.
One way to do so is through absorption and emission of
virtual photons in a resonator. Coupling between a single
qubit and a low-dissipation superconducting resonator was

theoretically studied in [15], and it has been experimentally
realized in numerous works (see, e.g., [16–18]). Incorporating
many qubits in a resonator provides a long-range interaction
between them [15,19–22]; such a setup has been used in
Refs. [11,23,24].

A convenient method to observe coherent quantum phe-
nomena is to measure the frequency dependent transmission
(reflection) coefficient of electromagnetic field propagating in
a transmission line [25] coupled to the system showing coher-
ent quantum-mechanical behavior. This so-called dispersive
readout of qubits has been used to study the diverse quantum
phenomena in a resonator coupled to a single [16,26] or many
qubits [11,23,24].

In this paper we show that in the presence of long-
range interaction an array of N qubits displays, beyond the
quantum beating oscillations on individual frequencies ωi ,
two collective coherent quantum oscillations. These quantum
oscillations are characterized by two frequencies, ω1 = �̄/�

and ω2 = ω̃R , where �̄ is the energy level difference averaged
over an ensemble of qubits, and ω̃R is the resonator frequency
renormalized by interaction. Moreover, we obtain that the
amplitude of these oscillations can be strongly enhanced in
the resonant case as ω1 � ω2.

The usual borrowed from quantum optics theoretical frame-
work for analyzing a system of qubits interacting with cavity
modes is the Tavis-Cummings/Dicke model [27–29], which
initially assumed identical qubits. This model allows one
to analyze various interesting quantum phenomena, e.g., the
vacuum Rabi splitting, a few photons induced Rabi splitting,
etc. One of the main results of this theory is the nonlinear
(∼√

N ) enhancement of coupling between qubits and res-
onator mode which has been observed experimentally [30,31].
Extensions of this model to systems with parameter spread
have also been considered [32]. However, the Tavis-Cummings
model relies on two important assumptions: (1) rotating
wave approximation, applicable only if qubit level splittings
approximately coincide with the resonator frequency and that
(2) the splittings themselves are not influenced by the emergent
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interaction. One can imagine that (2) can be particularly
restrictive for obtaining a collective coherent behavior.

In our analysis we circumvent these limitations while
reproducing Tavis-Cummings results in a limiting case. Thus,
we use an alternative theoretical approach borrowed from
mesoscopic physics [33–36]. In this approach the qubits and
resonant modes are characterized by continuous dynamic vari-
ables, and by tracing out the resonant mode degree of freedom
we obtain an effective long-range interaction between qubits.
Next, by making use of the instanton approach the energy
level splittings and the time-dependent correlation function of
interacting qubits, Ci(t), will be determined self-consistently.
The quantum-mechanical dynamics of interacting qubits will
be characterized quantitatively by the time-dependent cor-
relation function of individual qubits, i.e., Ci(t). We show
that the Fourier transform of this correlation function, Ci(ω),
can be directly measured through the frequency dependent
resonant drops of transmission coefficient D(ω) of electro-
magnetic field propagating in the transmission line coupled
to a system. Therefore, obtained collective quantum oscilla-
tions result in additional resonant drops in the dependence
of D(ω).

The paper is organized as follows: In Sec. II we derive
the effective Lagrangian for a multiqubit system coupled to
a resonator and obtain corrections to qubit level splittings. In
Sec. III correlation functions for qubits are obtained. In Sec. IV
we discuss possible signatures of collective quantum coherent
oscillations in a transmission line experiment. Section V
provides conclusions.

II. EFFECTIVE INTERACTION OF QUBITS
COUPLED TO A RESONATOR

We study the collective coherent quantum phenomena for
a particular example of an array of N rf SQUIDs inductively
coupled to a resonant cavity. Each rf SQUID (single qubit) is
characterized by a dynamic variable—Josephson phase ϕi(t).
Potential relief for the Josephson phase U (ϕi) can be tuned
by externally applied magnetic field to have a double-well
form. The resonator is characterized by two parameters L0

and C0, the inductance and capacitance per unit length,
accordingly. The resonator frequencies are written as ωR =
ckn, where c = 1/

√
L0C0 and kn = πn/�, where � is the

size of the resonator, n = 1,2 . . . . As the resonator has an
extremely high quality factor only one wave vector will be
important in the dynamics of coupled qubits and photons of
the resonator. Mutual inductance M provides an interaction
between rf SQUIDs and the resonator. The schematic of such a
system is presented in Fig. 1. The classical nonlinear dynamics
of such system has been studied, e.g., in Ref. [37].

We start our quantitative analysis with the partition function
Z written as a path integral over Josephson phases ϕi(τ ),
and the charge variable characterizing photon states in the
resonator Q(τ ), where τ is the imaginary time, i.e.,

Z =
∫

D[ϕi,Q] exp{−S[ϕi,Q]/�}, (1)

FIG. 1. (Color online) The schematic of an array of rf SQUIDs
incorporated into a resonator. An interaction through emission
(absorption) of virtual photons is shown.

where the action S[ϕi,Q] is

S[ϕi,Q] =
∫

�/(kBT )

0
dτ [Lqubits + Lres + Lint],

Lqubits = EJ

∑
i

{
(ϕ̇i)2

2ω2
p

− αiϕ
2
i

2
+ ϕ4

i

24

}
,

(2)
Lres = m

2

[
Q̇2 + ω2

RQ2
]
, m = L0�/2,

Lint = iEJ Q
∑

i

ηi ϕ̇i .

Here, EJ and ωp are the Josephson coupling energy and
the plasma frequency, accordingly. The parameters ηi and αi

can be expressed through the parameters of ith rf SQUID
and its mutual inductance with the resonator. We consider
the quantum dynamics involving the two low-lying levels of
each qubit only and therefore the real potential U (ϕi) of rf
SQUIDs is truncated to the model potential of ϕ2-ϕ4 form.
For our particular case of rf SQUIDs incorporated into a
low-dissipation resonator the parameters have been obtained
explicitly in Ref. [38]. Next, we trace out [22,33] the partition
function over the charge variable Q(τ ) and obtain the effective
action Seff of N globally coupled two-level systems:

Seff = EJ

N∑
i=1

∫
�/(kBT )

0
dτ

[
(ϕ̇i)2

2ω2
p

− αiϕ
2
i

2
+ ϕ4

i

24

]

+ EJ

2

∑
i,j

ξiξj

∫
�/(kBT )

0
dτ

∫
�/(kBT )

0
dτ ′

×GT (τ − τ ′)ϕ̇i ϕ̇j , (3)

where the kernel GT (τ ) is determined as

GT (τ ) = kBT

�

∑
n

eiωnτ

ω2
n + ω2

R

,

(4)
ωn = n(πkBT )/�, n = 0, ± 1, ± 2 . . . ;

and ξi = ηi

√
EJ /m are dimensionless coupling constants.
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FIG. 2. (Color online) A typical saddle-point solution: {ϕk(τ )}. It
consists of a single instanton “kink” on ith qubit [solid green (thick)
line] and “tails” on other qubits [solid red (thin) lines; the tails of 1
and N th qubits are shown]. The kink describes the switching between
two minima of a qubit potential while the tails caused by interaction
describe small oscillations of ϕk(τ ) around equilibrium positions.

The partition function is determined by saddle-point solu-
tions that satisfy the equation

ϕ̈i

ω2
p

+ ξi

∑
j

ξj

∫ β�

0
GT (τ − τ ′)ϕ̈j (τ ′)dτ ′ + αiϕi − ϕ3

i

6
= 0.

(5)

Let us consider solutions of the following form: an instanton
(anti-instanton) solution f (τ ) on the lth qubit and perturbative
“tails” on other qubits. This type of saddle-point solution is
shown in Fig. 2. For the tails we linearize equations near the
minimums of the potential U (ϕi). In the absence of interaction
the instanton (anti-instanton) solution is written as

f (τ ) = f0(τ − τc) = ±
√

6αl tanh

[√
αl

2
ωp(τ − τc)

]
, (6)

where τc is the instanton “center” time. Using Eqs. (5) and (6)
we obtain the effective action of this solution as [see details in
the Appendix]

Sl
eff = Sl

0 + 1

2
ξ 2
l

∫ β�

0
dτ

∫ β�

0
dτ ′G1(τ − τ ′)ḟ0(τ )ḟ0(τ ′),

(7)

where Sl
0 is the action calculated for instanton solution f0(τ )

in the absence of interaction between qubits, and the Fourier
transform of the kernel G1(ωn) = GT (ωn)/[1 + κ(ωn)], where

κ(ωn) =∑j �=l

ξ 2
j ω2GT (ωn)

ω2
n/ω

2
p+2αj

.

Now considering multi-instanton solutions with the help of
noninteracting instanton (anti-instanton) approximation [34],
which is valid for rather weak interaction strength between
qubits, one can calculate the partition function Z in a similar
fashion to [35]. It is then written as Z =∏N

i=1 Zi , Zi =
2 cosh[�i/(kBT )] and �i � �

ωp
√

αi
exp(−Si

eff/�). Calculating
integrals over τ in Eqs. (3) and (7) we obtain

Si
eff = EJ 4

√
2
α

3/2
i

ωp

+ Si
int. (8)

The coupling between qubits results in an enhancement of
effective action Si

eff , and therefore, a decrease of average level

splitting �i . Moreover, the dispersion of qubit level splittings
will be enhanced. The explicit value of Sint is determined by
the parameter

β � [2 + (N − 1)
〈
ξ 2
j

/
αj

〉]
(9)

and the ratio of two frequencies:
√

αiωp, i.e., the frequency
of small oscillations on the bottom of the potential well, and
ωR . Here, the 〈· · · 〉 determines the averaging over a spread of
qubit parameters ξi , αi , and �i . Explicit calculating integrals
in (7) allows one to obtain

Si
int = ξ 2

i αi

2
√

2EJ

ωR

{
3√
β

if β
(√

αiωp

ωR

)2 	 1
√

αiωp

ωR
if β

(√
αiωp

ωR

)2 
 1.
(10)

III. TIME-DEPENDENT QUANTUM-MECHANICAL
CORRELATION FUNCTION

In order to analyze the quantum dynamics of an array of
interacting qubits we obtain the time-dependent correlation
function of a single qubit, i.e., Ci(t) = 〈ϕi(t)ϕi(0)〉. In the
noninteracting instanton (anti-instanton) approximation we
can write ϕi(τ ) as a sum:

ϕi(τ ) = fi(τ ) +
∑
j �=i

ϕ̃
j

i (τ ), (11)

where fi(τ ) =∑k f0(τ − τ
(k)
i ) consists of alternating instan-

ton and anti-instanton “kinks,” τ
(k)
i are randomly distributed

instanton center times, and ϕ̃
j

i (τ ) correspond to tails from
instantons (anti-instantons) on the j th qubit. The typical
solution {ϕi(τ )} for a single instanton and many instantons
(anti-instantons) are shown in Figs. 2 and 3.

The correlation function Ci(τ ) is written as

Ci(τ ) = 〈fi(τ )fi(0)〉 +
∑
j �=i

〈
ϕ̃

j

i (τ )ϕ̃j

i (0)
〉
. (12)

Following Ref. [35] the first term in the right-hand part of
Eq. (12) is obtained as [the details of calculation are presented
in the Appendix]

C0
i (τ ) = ϕ2

0

cosh
([

�

kBT
− 2τ

]
�i

)
cosh[�i/(kBT )]

, (13)

where ±ϕ0 = ±√
6αi are the minima of the double-well

potential U (ϕi). Carrying out the analytical continuation to
the real time we obtain in the low-temperature limit, i.e.,

FIG. 3. (Color online) A typical saddle-point solution ϕk(τ ) con-
sisting of a large amount of randomly distributed instantons (anti-
instantons) fi(τ ) [large (green) circles] and corresponding tails [small
(red) circles] ϕ

j

i (τ ) are shown.
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kBT 
 �i , the correlation function of noninteracting qubits
as

C0
i (t) = ϕ2

0e
−2i�i t/�. (14)

This result indicates the presence of quantum beating oscilla-
tions with N different frequencies, ωi = �i/�, in the system.

However, there is another contribution to the correlation
function of the ith qubit stemming from the tails of instantons
(anti-instantons) occurring on other qubits. Such a contribution
shown in Figs. 2 (a single instanton solution) and 3 [many
instanton (anti-instanton) solution], is written as [it is a solution
of Eq. (5) linearized around the instantons (anti-instantons)]

ϕ̃
j

i (τ ) = kBT

2π�

∑
n

∫
dτ1G(ωn)eiωn(τ−τ1)fj (τ1), (15)

where

G(ω)

= − ξiξjω
2

(2αi + (ω/ωp)2)
[
ω2 + ω2

R + (N − 1)
〈
ξ 2
j

/
(2αj )

〉
ω2
] .

(16)

Substituting (15) in (12) and taking into account that C0
j (τ ) =

〈fj (τ )fj (0)〉 we obtain〈
ϕ̃

j

i (τ )ϕ̃j

i (0)
〉 = ϕ2

0

∑
n

G(ωn)G(−ωn)

×
∫

dτ1e
iωn(τ−τ1)C0

j (τ1). (17)

The quantum-mechanical dynamics is determined by the
renormalized frequency of the resonator ω̃R = ωR

√
2/β. This

renormalization occurs due to qubits introducing additional
inductance to the resonator because of the coupling. It can
be described as an effective homogeneous change of the
resonator inductance per unit length L0 → L0β/2. In the
limit of

√
αiωp

ω̃R
	 1 the kernel G(ω) is simplified as G(ω) =

− ξi ξl

βαi

ω2

[ω2+ω̃2
R ]

.
Carrying out the analytical continuation to the real time [36]

we obtain the time-dependent correlation function in the
following form:

Ci(t) = C0
i (t) + Ccol

1 (t) + Ccol
2 (t),

where the time-dependent correlation functions Ccol
1,2(t) are

expressed as

Ccol
1 (t) = (N − 1)ϕ2

0

(
ξ 2
i

αiβ

)2

×
〈

16ξ 2
l (�l/�)4(

ω̃2
R − 4(�l/�)2

)2 + 4γ 2(�l/�2)
e−(2i�l/�)(t)

〉
,

(18)

Ccol
2 (t) = (N − 1)ϕ2

0

(
ξ 2
i

αiβ

)2

e−[2iω̃R+γ /2]t

×
〈 −i16ξ 2

l (�l/�)ω̃2
R/γ

4(�l/�)2 − ω̃2
R + iγ ω̃R/2

〉
, (19)

where γ is a phenomenological parameter describing dissi-
pation in the resonator. This parameter allows one to keep
finite the resonant term in the correlation functions Ccol

1,2(t)
as ω̃R � �l . The correlation functions Ccol

1,2(t) determine
two collective quantum-mechanical oscillations with two
frequencies, namely, the energy level splitting averaged over
an ensemble of qubits, ω1 = �̄/� and self-frequency of the
resonator renormalized by interaction ω2 = ω̃R . The physical
origin of these collective oscillations is the excitation of
quantum oscillations of individual qubits by coherent quantum
beatings of other qubits in a system of globally coupled qubits.
Moreover, oscillations with frequency ω1 decay in time due to
the dissipation of qubits and to a spread of qubit parameters.
The second type of oscillations with the frequency ω2 decays in
time due to the dissipation of resonator γ , only. The amplitudes
of these oscillations enhance strongly in the resonant case as
ω̃R � �l . Such an enhancement can also lead to a suppression
of the double-well potential barrier for the Josephson phase,
and therefore, to an increase of a particular level splitting
�l . This effect is similar to a well-known microwave induced
enhancement of macroscopic quantum tunneling in Josephson
junctions [39]. Note that in the case N → ∞ corrections to
C(t) =∑i Ci(t) due to interaction stay finite because β in the
denominators of (18) and (19) is proportional to N in the large
N limit [see (9)].

IV. TRANSMISSION LINE EXPERIMENT

The correlation function Ci(t), and therefore, the character-
istic frequencies ωi , ω1, and ω2 can be directly obtained in a
so-called “dispersive readout.” In such a setup a frequency
dependent transmission coefficient D(ω) of a transmission
line (TL) inductively coupled to a low-dissipative resonator
coupled to a set of qubits is measured (see Fig. 4).

The electromagnetic waves in TL are characterized by
coordinate and time dependent charge distribution q(y,t)
satisfying the wave inhomogeneous equation:

1

c2

∂2q(y,t)

∂t2
− ∂2q(y,t)

∂y2
= κδ(y − y0)Q̇(t), (20)

where Q(t) is the charge distribution of a single mode in the
resonator. The Q(t) satisfies to an inhomogeneous dynamic

FIG. 4. (Color online) A schematic of the experimental setup: A
low-dissipative TL is inductively coupled to the investigated system,
i.e., the array of qubits incorporated in a resonator.
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equation

Q̈ + ω2
RQ = κ̃ q̇(y0,t) −

∑
i

ξi〈ϕ̇i〉. (21)

Here κ and κ̃ are the corresponding coupling parameters,
and 〈· · · 〉 is the quantum-mechanical average. On the other
hand 〈ϕ̇i〉 is the linear response of rf SQUIDs to an external
perturbation caused by waves in the transmission line. Now
let us assume a wave with frequency ω is passing through the
line, i.e., q(y,t) = q(y)eiωt and Q(t) = Q0e

iωt :

−∂2q(y)

∂y2
− κδ(y − y0)iωQ0 = ω2

c2
q,

−ω2Q0 + ω2
RQ0 = κ̃iωq(y0) + i

∑
i

ωξi〈ϕi〉ω.

According to Kubo’s formula [40] the quantum-mechanical
linear response of qubits to an external perturbation of the
form [iξiωQ0e

iωt ]ϕ̂i can be written as

〈ϕi〉ω = iωξiQ0C̃i(ω),

where C̃i(ω) = ∫ dt eiωt Im Ci(t) is the Fourier transformation
of the response function.

Inserting the result into the resonator equation of motion
one obtains Q0:

Q0 = iκ̃ωq(y0)/F (ω),

where F (ω) is

F (ω) = −ω2 + ω2
R − χω2C̃(ω)

and C̃(ω) =∑i C̃i(ω), with χ = ξ 2
i . Now we turn to the

transmission line equation, substituting the value of Q0:

−∂2q(y)

∂y2
− κκ̃ω2δ(y − y0)q(y0)/F (ω) = ω2

c2
q(y).

For the transmission line we have a Schrödinger equation with
the δ-function potential. The solution of this problem is well

known: q(y) = eiωy/c + Re−iωy/c for y < y0 and T eiωy/c

for y > y0, where reflection and transmission amplitudes
are

T = 2iω/c

κκ̃ω2/F (ω) + 2iω/c
,

R = −κκ̃ω2/F (ω)

κκ̃ω2/F (ω) + 2iω/c
.

One can now determine the intensity and phase shift of the
transmitted signal:

D(ω) = |T |2 = 4(ω/c)2

[κκ̃ω2/F (ω)]2 + 4(ω/c)2
,

�D = arctan
κκ̃ω2

2F (ω)ω/c
.

Now one can see that for the frequencies ωres satisfying the
condition [which means F (ω) = 0](

ω2
res − ω2

R

) = χC̃(ωres), (22)

the transmission D(ω) shows the resonant drop.
The Fourier transformation of the response function C(ω)

has the resonant form [see Eqs. (14), (18), and (19)], and the
resonant drops in the dependence of D(ω) are fingerprints
of quantum-mechanical oscillations, i.e., quantum beatings
of individual qubits (in the absence of interactions between
qubits) and the collective oscillations.

Next, we show that in the absence of interaction between
qubits and in the case as all qubits have the same parameters,
i.e., �i = �, our model reproduces the well-known
Tavis-Cummings result [28] for avoided crossing level
splittings. Indeed, the response function in this case displays
a single resonance:

C̃(ω) = 2Nϕ2
0ωq

ω2
q − ω2

, (23)

where ωq = 2�/�. Substituting (23) in (22) one obtains the
splitting of resonant frequencies as

−ω2
res + ω2

R − 2χNϕ2
0ωq

ω2
q − ω2

res

= 0, ω2
res = 1

2

[
ω2

q + ω2
R + 2χNϕ2

0ωq ±
√(

ω2
q − ω2

R

)2 + 4
(
ω2

q + ω2
R

)
χϕ2

0ωqN + 4ϕ4
0χ

2ω2
qN

2
]
,

Thus, in the case of identical qubits the splitting between two
resonant drops is strongly enhanced (∝√

N ). Moreover, in a
realistic case of nonidentical qubits an enhanced splitting can
be considered as a fingerprint of collective (synchronized)
quantum beating [31].

V. CONCLUSIONS

In conclusion, we have shown that an array of strongly
coupled qubits can display coherent collective quantum oscil-
lations. We have considered a particular example of an array
of superconducting qubits (rf SQUIDs) incorporated into a
resonator. In such system a long-range interaction (a global

coupling) can be provided by emission (absorption) of virtual
photons in the resonator. By analyzing quantum-mechanical
correlation functions we have obtained that beyond quantum
beating oscillations with different frequencies, ωi = �i/�,
there are two collective quantum-mechanical oscillations with
two frequencies, ω1 and ω2. These collective oscillations
appear in the presence of a long-range coupling between
qubits, and they are induced by coherent quantum beatings
occurring in a whole system. The characteristic frequencies
of these oscillations can be directly measured through,
e.g., the resonant drops of transmission coefficient D(ω) of
electromagnetic field propagating in the transmission line
coupled to a system [see Eq. (22)]. The observation of these
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collective quantum-mechanical modes will provide evidence
of synchronized quantum dynamics in a system of strongly
interacting qubits.
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APPENDIX

1. A single instanton saddle-point solution and an effective
action of N qubits with a long-range interaction

Classical equations of motion for the action Seff are given
by

ϕ̈i

ω2
p

+ ξi

∑
j

ξj

∫ β�

0
GT (τ − τ ′)ϕ̈j (τ ′)dτ ′ + αiϕi − ϕ3

i

6
= 0.

(A1)

We seek a saddle-point solution consisting of an instanton
solution f (τ ) on the lth rf SQUID and a perturbative tail ϕi(τ )

on the others near the extremum positions of the potential

±√
6αi . For the tail we linearize the equations αiϕi − ϕ3

i

6 ≈
−2αiϕi . We also make use of the Fourier transformation:

ϕi(τ ) = 1

β�

∑
n

eiωnτ ϕi(ωn), i �= l.

For i �= l we obtain (we write just ω instead of ωn)

− ω2

ω2
p

ϕi(ω) − ξi

∑
j

ξjω
2ϕj (ω)gT (ω) − 2αiϕi(ω) = 0.

(A2)

Multiplying by ξi and summing over i �= l one arrives at∑
i �=l

ξiϕi(ω) = −κξlf (ω)

1 + κ
, κ =

∑
j �=l

ξ 2
j ω2gT (ω)

ω2/ω2
p + 2αj

.

(A3)

Applying (A3) to (5) we have the following self-consistent
equation for f τ :

f̈

ω2
p

+ ξ 2
l

∫ β�

0
G1(τ − τ ′)f̈ (τ ′)dτ ′ + αlf − f 3

6
= 0, (A4)

where G1 is defined by its Fourier transform: g1(ω) =
gT (ω)/(1 + κ). Now let us return to the effective action Seff :

SE
eff = Sl + Sint + EJ

⎧⎨⎩∑
i �=l

∫ β�

0
dτ

[
(ϕ̇i)2

2ω2
p

− 3αi

2
+ αiϕ

2
i

]⎫⎬⎭ = Sl + Sint + EJ

⎧⎨⎩∑
i �=l

∫ β�

0
dτ

[
−ϕiϕ̈i

2ω2
p

+ αiϕ
2
i

]⎫⎬⎭
= Sl + Sint + EJ

∑
i �=l

∫ β�

0
dτ ξi

ϕi(τ )

2

∑
j

ξj

∫ β�

0
GT (τ − τ ′)ϕ̈j (τ ′)dτ ′

= EJ

{∫ β�

0
dτ

[
(ḟ )2

2ω2
p

− αif
2

2
+ f 4

4!

]
+ 1

2
ξ 2
l

∫ β�

0
dτ

∫ β�

0
dτ ′G1(τ − τ ′)ḟ (τ )ḟ (τ ′)

}
. (A5)

Considering f = f0 + f̃ , where f0 is the instanton solution
in the absence of the effective interaction term and f̃ is small
on the order of ξ 2

l , we arrive at Eq. (7):

SE
eff = S0

inst + 1

2
ξ 2
l

∫ β�

0
dτ

∫ β�

0
dτ ′G1(τ − τ ′)ḟ0(τ )ḟ0(τ ′).

2. The time-dependent correlation function C0
i (t)

of a single qubit

The time-dependent correlation function of a single qubit
(without any interactions) C0

i (t) = 〈fi(t)fi(0)〉 can be ob-
tained as follows: we write fi(τ ) =∑k f0(τ − τ

(k)
i ) and

assume the noninteracting instanton approximation. It is
valid as �i 	 kBT . One can also see that for configurations
with k instantons and k anti-instantons in the interval [0,τ ],
fi(τ )fi(0) = ϕ2

0 and for those with k instantons and k − 1
anti-instantons, fi(τ )fi(0) = −ϕ2

0 .

Following [35] we can replace the path integral with the
sum

〈f̂i(τ )f̂i(0)〉 ≈ 2

Z

∞∑
n=0

(�)2n

∫ β�

0
dt2n

∫ t2n

0
dt2n−1 · · ·

∫ t2

0
dt1

×
2n∏
i=1

ϕ2
0sgn(ti − τ ) = 2

Z

∞∑
n=0

(�)2nϕ2
0I2n(β�),

(A6)

where � = (�/τ0) exp(−Sinst/�), τ0 is the instanton rise time,
t2k+1 and t2k are instanton and anti-instanton center times,
respectively, and the product of sign functions gives the right
sign to every path contribution according to the rule described
above. Now we proceed to calculate I2n:

I2n(β�) =
∫ β�

0
dt2n

∫ t2n

0
dt2n−1 · · ·

∫ t2

0
dt1

2n∏
i=1

sgn(ti − τ ).

(A7)
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One can see that integrand is invariant under permutations of t1 · · · t2n. Then we can write I2n(β�) in a symmetric form:

I2n(β�) = 1

(2n)!

∑
σ

∫ β�

0
d[σ (t2n)]

∫ σ (t2n)

0
d[σ (t2n−1)] · · ·

∫ σ (t2)

0
d[σ (t1)]

2n∏
i=1

sgn(ti − τ ), (A8)

where σ is an element of the permutation group and the sum is calculated over all possible permutations. One can now see that
each term in the sum is an integral over one part of a 2n-dimensional cube, and together the regions of integration simply add up
to become the whole 2n-dimensional cube. This leads us to

I2n(β�) = 1

(2n)!

∫ β�

0
dt2n

∫ β�

0
dt · · ·

∫ β�

0
dt1

2n∏
i=1

sgn(ti − τ ) = 1

(2n)!

(∫ β�

0
dt sgn(t − τ )

)2n

= (β� − 2τ )2n

(2n)!
. (A9)

Now we can evaluate the correlation function using Z = 2 cosh(β��):

Ci(τ ) ≈ 2

Z

∞∑
n=0

(�)2n ϕ2
0

(β� − 2τ )2n

(2n)!
= ϕ2

0
cosh([β� − 2τ ]�)

cosh(β��)
. (A10)

The analytic continuation to the real time t allows one to obtain

C0
i (t) = ϕ2

0
cosh([β� − 2i(t)]�)

cosh(β��)
. (A11)

In the limit of β� → ∞ one obtains [see Eq. (14)]

C0
i (t) ≈ ϕ2

0e
−2i�t/�. (A12)
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