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Abstract

We verify the new entropic and information inequalities for noncomposite systems using an experi-
mental 5×5 density matrix of the qudit state measured by the tomographic method in a multilevel
superconducting circuit. These inequalities are well known for bipartite and tripartite systems but
have never been tested for superconducting qudits. Entropic inequalities can also be used to evalu-
ate the accuracy of experimental data and the value of mutual information deduced from them and
characterize correlations between different degrees of freedom in a noncomposite system.
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1. Introduction

During the last few decades, tremendous progress has been made in experimental control over quantum

systems. In particular, experiments with superconducting circuits based on Josephson junction devices [1,

2] have been rapidly developing recently [3]. Specifically, the spectroscopic [4, 5] and time-domain [6]

properties of such systems were studied both theoretically and experimentally. With the improvement

of coherence time of superconducting qubits, it became possible to obtain the density matrices of such

systems, using the quantum-state tomography [7] as well as the Wigner tomography [8].

Along with the development of quantum circuits, the properties of composite quantum systems, i.e.,

the systems containing subsystems, have been extensively studied, which resulted in numerous practi-

cal applications. These systems were also described in terms of classical information theory [9] in the

quantum domain [10], and their information and entropic characteristics were investigated, including the

von Neumann entropy and quantum mutual information, discord-related measures, entropic inequalities,

contextuality, causality, and the subadditivity and strong subadditivity conditions.

In contrast, the idea of using noncomposite quantum systems for quantum technologies was sug-

gested [11–13], and quantum correlations in such systems have been analyzed only recently [14,15]. The
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latter opened a way of mapping information and entropic measures for composite quantum systems on

the noncomposite quantum systems [14–19].

In this work, we aim to verify the entropic and information inequalities using an experimental 5×5

density matrix of the qudit state (j = 2) obtained by the direct Wigner tomography in a superconducting

circuit [8, 20, 21]. The inequalities were obtained employing the approach [14–18] to find analogs of the

subadditivity and strong subadditivity conditions, well known for bipartite and tripartite systems, for a

single qudit state.

2. Superconducting Circuits

Superconducting circuits with Josephson junctions are macroscopic quantum objects which can be

of several micrometers wide while still preserving quantum properties. This happens because they are

artificially isolated from the environment, which leaves them with a single degree of freedom. The intrinsic

parameters of these circuits can be engineered as desired and adjusted with an external parameter (for

example, a magnetic field); so they are often called artificial atoms.

2.1. Josephson Junction

The Josephson junction in superconducting circuits serves as a nondissipative nonlinear element. It

consists of two superconductors separated by a thin insulating layer, through which Cooper pairs can

coherently tunnel. This system was described by Brian Josephson [22], who showed that the supercurrent

across the junction depends on the phase difference between the superconductors

I = Ic sin(φ2 − φ1) = Ic sinφ, (1)

where Ic stands for the maximum nondissipative current flowing through the junction, i.e., the critical

current. Josephson also showed that, when the voltage is applied across the junction, the phase difference

changes in time, which leads to the oscillations of the critical current with the angular frequency ω:

�φ̇ = �ω = 2 eV. (2)

Substituting this phase difference into the time derivative of Eq. (1) and comparing it with the Faraday

law, we obtain the Josephson inductance

LJ(φ) =
�

2eIc cosφ
=

Φ0

2π(I2c − I2)1/2
. (3)

As the Josephson junction has some intrinsic capacity C, it behaves as a nonlinear oscillator with

angular frequency ωp

ωp(I) =
1√
LJC

=
(2πIc/Φ0C)1/2

(1− I2/I2c )
1/4

. (4)

The total current flow trough the junction can be written as J = Ic sinφ + (V/R) + CV̇ . Substituting

V̇ = (�/2e)φ̈ from Eq. (2), we arrive at

J = Ic sinφ+
1

R

Φ0

2π
φ̇+ C

Φ0

2π
φ̈, (5)
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which is equivalent to the equation of motion of a particle moving in a tilted washboard potential

mφ̈+m
1

RC
φ̇+

∂U(φ)

∂φ
= 0, (6)

where U = −IcΦ0

2π

(
I

Ic
φ+ cosφ

)
; see Fig. 2.1.

a) b)

Fig. 1. Tilted washboard potential (a) and quantized energy levels inside one of the potential wells (b).

2.2. Superconducting Qudit

A closer look at one of the wells in the tilted washboard potential in Fig. 2 b with the quantized energy

levels gives us a perfectly suitable d-level system (qudit). Varying the potential by an external magnetic

field, we can achieve the desired number of energy levels in the well. The physical implementation of this

system is called the Josephson phase circuit [23, 24]; it is shown in Fig. 2.

a) b)

Fig. 2. The Josephson phase circuit (JPC) with an on-chip SQUID. The schematic diagram of the circuit (a).
The left-hand side corresponds to the JPC, and the right-hand side shows the on-chip SQUID, which is used for
the readout. The micrograph of the fabricated sample (b). [Images adopted from [20].]
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The quantum state of the Josephson phase circuit is controlled through pulses of the bias current.

The measurement of the state employs the escape from the potential well via tunneling. For example, to

measure the occupation probability of the state |1〉, one can pump microwaves at frequency ω41, which

will induce a |1〉 → |4〉 transition. Then the state will rapidly tunnel due to the large tunneling rate Γ4.

When the tunneling occurs, a voltage appears across the junction, which can be measured directly by an

on-chip SQUID.

In this paper, we employ the results obtained in the experiment by Shalibo et al. [8, 20, 21], where

the Wigner distribution of the Josephson phase circuit was directly measured using simple tomography

pulses.

3. Entropic Inequalities

Quantum states are described by the density matrices of operators ρ̂ with the following properties:

Tr(ρ̂) = 1, ρ̂ = ρ̂†, ρ̂ ≥ 0. (7)

We consider a 5×5 density matrix ρ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ11 ρ12 ρ13 ρ14 ρ15

ρ21 ρ22 ρ23 ρ24 ρ25

ρ31 ρ32 ρ33 ρ34 ρ35

ρ41 ρ42 ρ43 ρ44 ρ45

ρ51 ρ52 ρ53 ρ54 ρ55

⎞
⎟⎟⎟⎟⎟⎟⎠

for a qudit with j = 2. We can be

rewrite this matrix as a 6×6 matrix ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 ρ12 ρ13 ρ14 ρ15 0

ρ21 ρ22 ρ23 ρ24 ρ25 0

ρ31 ρ32 ρ33 ρ34 ρ35 0

ρ41 ρ42 ρ43 ρ44 ρ45 0

ρ51 ρ52 ρ53 ρ54 ρ55 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

by adding one more zero row

and zero column.

Looking at this system, one can realize that it can be viewed as a tensor product of two subsystems:

a qubit and a qutrit. So, using an invertible mapping of indices

1 ↔ −1 − 1/2; 2 ↔ −1 1/2; 3 ↔ 0 − 1/2; 4 ↔ 0 1/2; 5 ↔ 1 − 1/2; 6 ↔ 1 1/2,

we obtain the density matrix, which describes the bipartite qubit–qutrit state. The density matrices

of the subsystems are usually derived by taking the partial trace over the corresponding indices. We

propose a simplified approach by dividing the density matrix into blocks (see, for example, [25]) with

fewer dimensions, namely,

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 ρ12 ρ13 ρ14 ρ15 0

ρ21 ρ22 ρ23 ρ24 ρ25 0

ρ31 ρ32 ρ33 ρ34 ρ35 0

ρ41 ρ42 ρ43 ρ44 ρ45 0

ρ51 ρ52 ρ53 ρ54 ρ55 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
R11 R12

R21 R22

)
. (8)
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Then the density matrices of the subsystems are

ρ1 =

(
TrR11 TrR12

TrR21 TrR22

)
=

(
ρ11 + ρ22 + ρ33 ρ14 + ρ25

ρ41 + ρ52 ρ44 + ρ55

)
(9)

and

ρ2 = (R11 +R22) =

⎛
⎜⎝
ρ11 + ρ44 ρ12 + ρ45 ρ13

ρ21 + ρ54 ρ22 + ρ55 ρ23

ρ31 ρ32 ρ33

⎞
⎟⎠ . (10)

Now we can check the correlations in the system. One of the most important correlation characteristics

is entropy. In this work, we deal with the von Neumann entropy [26]

SN = −Tr ρ ln ρ. (11)

For the von Neumann entropy of the bipartite system, one can write the subadditivity condition

Sρ ≤ Sρ1 + Sρ2 as follows:

−Tr ρ ln ρ ≤ −Tr ρ1 ln ρ1 − Tr ρ2 ln ρ2 (12)

and introduce the mutual information

Ibp1 = Sρ1 + Sρ2 − Sρ. (13)

Now we can repeat this process for the other partition of the 6×6 density matrix:

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 ρ12 ρ13 ρ14 ρ15 0

ρ21 ρ22 ρ23 ρ24 ρ25 0

ρ31 ρ32 ρ33 ρ34 ρ35 0

ρ41 ρ42 ρ43 ρ44 ρ45 0

ρ51 ρ52 ρ53 ρ54 ρ55 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝
r11 r12 r13

r21 r22 r23

r31 r32 r33

⎞
⎟⎠ (14)

and obtain the density matrices of the subsystems

ρ̃1 =

⎛
⎜⎝
Tr r11 Tr r12 Tr r13

Tr r21 Tr r22 Tr r23

Tr r31 Tr r32 Tr r33

⎞
⎟⎠ =

⎛
⎜⎝
ρ11 + ρ22 ρ13 + ρ24 ρ15

ρ31 + ρ42 ρ33 + ρ44 ρ35

ρ51 ρ53 ρ55

⎞
⎟⎠ (15)

and

ρ̃2 = (r11 + r22 + r33) =

(
ρ11 + ρ33 + ρ55 ρ12 + ρ34

ρ21 + ρ43 ρ22 + ρ44

)
. (16)

So the subadditivity condition Sρ ≤ Sρ̃1 + Sρ̃2 reads

−Tr ρ ln ρ ≤ −Tr ρ̃1 ln ρ̃1 − Tr ρ̃2 ln ρ̃2, (17)
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and the mutual information is

Ibp2 = Sρ̃1 + Sρ̃2 − Sρ. (18)

Next, we add two more zero rows and columns to this matrix, in order to obtain an 8×8 matrix.

The system described by this density matrix can be divided into three subsystems (represented by 2×2

matrices) using the following mapping of indices:

1 ↔ −1/2 − 1/2 − 1/2; 2 ↔ −1/2 − 1/2 1/2;

3 ↔ −1/2 1/2 − 1/2; 4 ↔ −1/2 1/2 1/2;

5 ↔ 1/2 − 1/2 − 1/2; 6 ↔ 1/2 − 1/2 1/2;

7 ↔ 1/2 1/2 − 1/2; 8 ↔ 1/2 1/2 1/2.

Here, we use the same approach of dividing the matrix into blocks to calculate the partial traces and get

the matrices for the subsystems

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0

0 ρ11 ρ12 ρ13 0 ρ14 ρ15 0

0 ρ21 ρ22 ρ23 0 ρ24 ρ25 0

0 ρ31 ρ32 ρ33 0 ρ34 ρ35 0

0 0 0 0 0 0 0 0

0 ρ41 ρ42 ρ43 0 ρ44 ρ45 0

0 ρ51 ρ52 ρ53 0 ρ54 ρ55 0

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0

0 ρ11 ρ12 ρ13 0 ρ14 ρ15 0

0 ρ21 ρ22 ρ23 0 ρ24 ρ25 0

0 ρ31 ρ32 ρ33 0 ρ34 ρ35 0

0 0 0 0 0 0 0 0

0 ρ41 ρ42 ρ43 0 ρ44 ρ45 0

0 ρ51 ρ52 ρ53 0 ρ54 ρ55 0

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

The density matrices that we are using hereinafter are the matrix of the second subsystem R2 and two

joint matrices of the qubit–qubit subsystems ρ12 and ρ23

R2 =

(
ρ11 + ρ14 + ρ41 + ρ44 ρ13 + ρ43

ρ31 + ρ34 ρ22 + ρ33 + ρ25 + ρ52 + ρ55

)
, ρ12 =

⎛
⎜⎜⎜⎜⎝
ρ11 ρ13 ρ14 0

ρ31 ρ22 + ρ33 ρ34 ρ25

ρ41 ρ43 ρ44 0

0 ρ52 0 ρ55

⎞
⎟⎟⎟⎟⎠ ,

(20)

ρ23 =

⎛
⎜⎜⎜⎜⎝
0 0 0 0

0 ρ11 + ρ14 + ρ41 + ρ44 ρ12 + ρ15 + ρ42 + ρ45 ρ13 + ρ43

0 ρ21 + ρ24 + ρ51 + ρ54 ρ22 + ρ25 + ρ52 + ρ55 ρ23 + ρ53

0 ρ31 + ρ34 ρ32 + ρ35 ρ33

⎞
⎟⎟⎟⎟⎠ . (21)

For such a kind of the tripartite system, one can write the strong subadditivity condition [27]

Sρ + SR2 ≤ Sρ12 + Sρ23

as follows:

−Tr ρ ln ρ− TrR2 lnR2 ≤ −Tr ρ12 ln ρ12 − Tr ρ23 ln ρ23. (22)
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4. Verifying the Experimental Data

In this section, we calculate the density matrices of the subsystems from the experimentally obtained

5×5 density matrix. This density matrix corresponds to the qudit described in Sec 2.2 and measured

in [8, 20, 21].

The density matrices in Eqs. (9) and (10) read

ρ1 =

(
0.985 8.3 · 10−5 − 2.7 · 10−4 i

8.3 · 10−5 + 2.7 · 10−4 i 0.006

)
, ρ2 =

⎛
⎜⎝

0.96 8.8 · 10−4 − 0.003 i 0.008− 0.018 i

8.8 · 10−4 + 0.003 i 0.004 −7.6 · 10−4 − 2.9 · 10−4 i

0.008 + 0.018 i −7.6 · 10−4 + 2.9 · 10−4 i 0.026

⎞
⎟⎠ .

The density matrices in Eqs. (15) and (16) are

ρ̃1 =

⎛
⎜⎝

0.96 0.008− 0.018 i −0.006− 8.6 · 10−4 i

0.008 + 0.018 i 0.028 0.005− 0.007 i

−0.006 + 8.6 · 10−4 i 0.005 + 0.007 i 0.004

⎞
⎟⎠ , ρ̃2 =

(
0.99 0.005− 0.002 i

0.005 + 0.002 i 0.002

)
.

Using these matrices, we can calculate the corresponding entropies and mutual information and test

the subadditivity condition for different partitions in Eqs. (12) and (17). Moreover, we can also change

the position of the zero row and zero column in Eqs. (8) and (14) to see how these entities will be changed.

The results of these calculations are given in Table 1 and shown in Fig. 5.

Table 1. Calculated Entropies and Mutual Information.

Zero-row position Sρ Sbp1 Sbp2 Ibp1 Ibp2

(1; 1) 0.1583 0.300 0.180 0.1418 0.0224

(2; 2) 0.1583 0.1965 0.3040 0.0383 0.1457

(3; 3) 0.1583 0.1968 0.3042 0.0386 0.1459

(4; 4) 0.1583 0.2001 0.1987 0.0418 0.0404

(5; 5) 0.1583 0.1873 0.2059 0.0291 0.0477

(6; 6) 0.1583 0.1996 0.1768 0.0413 0.0185

Finally, we calculate the density matrices for the tripartite system, Eqs. (20) and (21); they read

ρ12 =

⎛
⎜⎜⎜⎜⎝

0.959 0.008− 0.018 i 0.0002− 0.0004 i 0

0.008 + 0.018 i 0.026 0.003 + 0.0013 i −0.0001 + 0.0002 i

0.0002 + 0.0004 i 0.003− 0.0013 i 0.0018 0

0 −0.0001− 0.0002 i 0 0.004

⎞
⎟⎟⎟⎟⎠ ,

ρ23 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0.961 i −0.005− 0.004 i 0.012− 0.019 i

0 −0.005 + 0.004 i 0.004 0.004 + 0.0064 i

0 0.012 + 0.019 i 0.004− 0.0064 i 0.026

⎞
⎟⎟⎟⎟⎠ ,

R2 =

(
0.961 0.012− 0.019 i

0.012 + 0.019 i 0.030

)
.
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Fig. 3. Experimentally obtained density matrix of a
superconducting qudit [8, 20, 21].

a) b)

c) d)

Fig. 4. Calculated density matrices for the bipartite sys-
tem with the first partition ρ1 (a) and ρ2 (b) given by
Eqs. (9) and (10) and the second partition ρ̃1 (c) and
ρ̃2 (d) given by Eqs. (15) and (16).

Fig. 5. The entropies and mutual information from Table 1 versus the position of the zero row for the qubit–qutrit
partition. Here, the first partition on the left and the second partition on the right. Left-side entropy is shown in
light gray, right-side entropy is shown in dark gray, and mutual information by the curve.

R2 ρ12 ρ23

Fig. 6. Calculated density matrices of the subsystems for the tripartite system.
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The density matrices of the subsystems for the tripartite system calculated in view of the experimental

data are shown in Fig. 6.

After calculations, the strong subadditivity condition (22) reads: 0.2997 ≤ 0.3142; so the mutual

information is I = Sρ12 + Sρ23 − Sρ − SR2 = 0.3142− 0.2997 = 0.0147.

5. Conclusions

We checked that the experimentally measured density matrix of a superconducting qudit [8] satisfies

the new entropic inequalities for noncomposite systems, given by Eqs. (12), (17), and (22). These

inequalities can be further used to evaluate the accuracy of the experimental data. Moreover, the value of

mutual information deduced from the entropic inequalities may characterize correlations between different

degrees of freedom in a noncomposite system. There also exist other inequalities for the von Neumann

entropy and q-entropy, which we will check in future publications.
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